5,964 research outputs found

    Logical Relations for Monadic Types

    Full text link
    Logical relations and their generalizations are a fundamental tool in proving properties of lambda-calculi, e.g., yielding sound principles for observational equivalence. We propose a natural notion of logical relations able to deal with the monadic types of Moggi's computational lambda-calculus. The treatment is categorical, and is based on notions of subsconing, mono factorization systems, and monad morphisms. Our approach has a number of interesting applications, including cases for lambda-calculi with non-determinism (where being in logical relation means being bisimilar), dynamic name creation, and probabilistic systems.Comment: 83 page

    Relations Without Polyadic Properties: Albert the Great On the Nature and Ontological Status of Relations

    Get PDF
    I think it would be fair to say that, until about 1900, philosophers were generally reluctant to admit the existence of what are nowadays called polyadic properties.1 It is important to recognize, however, that this reluctance on the part of pre-twentieth-century philosophers did not prevent them from theorizing about relations. On the contrary, philosophers from the ancient through the modern period have had much to say about both the nature and the ontological status of relations. In this paper I examine the views of one such philosopher, namely, Albert the Grea

    Dynamic IFC Theorems for Free!

    Full text link
    We show that noninterference and transparency, the key soundness theorems for dynamic IFC libraries, can be obtained "for free", as direct consequences of the more general parametricity theorem of type abstraction. This allows us to give very short soundness proofs for dynamic IFC libraries such as faceted values and LIO. Our proofs stay short even when fully mechanized for Agda implementations of the libraries in terms of type abstraction.Comment: CSF 2021 final versio

    Possible Patterns

    Get PDF
    “There are no gaps in logical space,” David Lewis writes, giving voice to sentiment shared by many philosophers. But different natural ways of trying to make this sentiment precise turn out to conflict with one another. One is a *pattern* idea: “Any pattern of instantiation is metaphysically possible.” Another is a *cut and paste* idea: “For any objects in any worlds, there exists a world that contains any number of duplicates of all of those objects.” We use resources from model theory to show the inconsistency of certain packages of combinatorial principles and the consistency of others

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    On Descriptive Complexity, Language Complexity, and GB

    Get PDF
    We introduce LK,P2L^2_{K,P}, a monadic second-order language for reasoning about trees which characterizes the strongly Context-Free Languages in the sense that a set of finite trees is definable in LK,P2L^2_{K,P} iff it is (modulo a projection) a Local Set---the set of derivation trees generated by a CFG. This provides a flexible approach to establishing language-theoretic complexity results for formalisms that are based on systems of well-formedness constraints on trees. We demonstrate this technique by sketching two such results for Government and Binding Theory. First, we show that {\em free-indexation\/}, the mechanism assumed to mediate a variety of agreement and binding relationships in GB, is not definable in LK,P2L^2_{K,P} and therefore not enforcible by CFGs. Second, we show how, in spite of this limitation, a reasonably complete GB account of English can be defined in LK,P2L^2_{K,P}. Consequently, the language licensed by that account is strongly context-free. We illustrate some of the issues involved in establishing this result by looking at the definition, in LK,P2L^2_{K,P}, of chains. The limitations of this definition provide some insight into the types of natural linguistic principles that correspond to higher levels of language complexity. We close with some speculation on the possible significance of these results for generative linguistics.Comment: To appear in Specifying Syntactic Structures, papers from the Logic, Structures, and Syntax workshop, Amsterdam, Sept. 1994. LaTeX source with nine included postscript figure
    • 

    corecore