702,934 research outputs found
Automated Termination Proofs for Logic Programs by Term Rewriting
There are two kinds of approaches for termination analysis of logic programs:
"transformational" and "direct" ones. Direct approaches prove termination
directly on the basis of the logic program. Transformational approaches
transform a logic program into a term rewrite system (TRS) and then analyze
termination of the resulting TRS instead. Thus, transformational approaches
make all methods previously developed for TRSs available for logic programs as
well. However, the applicability of most existing transformations is quite
restricted, as they can only be used for certain subclasses of logic programs.
(Most of them are restricted to well-moded programs.) In this paper we improve
these transformations such that they become applicable for any definite logic
program. To simulate the behavior of logic programs by TRSs, we slightly modify
the notion of rewriting by permitting infinite terms. We show that our
transformation results in TRSs which are indeed suitable for automated
termination analysis. In contrast to most other methods for termination of
logic programs, our technique is also sound for logic programming without occur
check, which is typically used in practice. We implemented our approach in the
termination prover AProVE and successfully evaluated it on a large collection
of examples.Comment: 49 page
Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms
In this paper, we present two alternative approaches to defining answer sets
for logic programs with arbitrary types of abstract constraint atoms (c-atoms).
These approaches generalize the fixpoint-based and the level mapping based
answer set semantics of normal logic programs to the case of logic programs
with arbitrary types of c-atoms. The results are four different answer set
definitions which are equivalent when applied to normal logic programs. The
standard fixpoint-based semantics of logic programs is generalized in two
directions, called answer set by reduct and answer set by complement. These
definitions, which differ from each other in the treatment of
negation-as-failure (naf) atoms, make use of an immediate consequence operator
to perform answer set checking, whose definition relies on the notion of
conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other
two definitions, called strongly and weakly well-supported models, are
generalizations of the notion of well-supported models of normal logic programs
to the case of programs with c-atoms. As for the case of fixpoint-based
semantics, the difference between these two definitions is rooted in the
treatment of naf atoms. We prove that answer sets by reduct (resp. by
complement) are equivalent to weakly (resp. strongly) well-supported models of
a program, thus generalizing the theorem on the correspondence between stable
models and well-supported models of a normal logic program to the class of
programs with c-atoms. We show that the newly defined semantics coincide with
previously introduced semantics for logic programs with monotone c-atoms, and
they extend the original answer set semantics of normal logic programs. We also
study some properties of answer sets of programs with c-atoms, and relate our
definitions to several semantics for logic programs with aggregates presented
in the literature
- …
