92,155 research outputs found
Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits
In order to formally understand the power of neural computing, we first need
to crack the frontier of threshold circuits with two and three layers, a regime
that has been surprisingly intractable to analyze. We prove the first
super-linear gate lower bounds and the first super-quadratic wire lower bounds
for depth-two linear threshold circuits with arbitrary weights, and depth-three
majority circuits computing an explicit function.
We prove that for all , the
linear-time computable Andreev's function cannot be computed on a
-fraction of -bit inputs by depth-two linear threshold
circuits of gates, nor can it be computed with
wires. This establishes an average-case
``size hierarchy'' for threshold circuits, as Andreev's function is computable
by uniform depth-two circuits of linear threshold gates, and by
uniform depth-three circuits of majority gates.
We present a new function in based on small-biased sets, which
we prove cannot be computed by a majority vote of depth-two linear threshold
circuits with gates, nor with
wires.
We give tight average-case (gate and wire) complexity results for
computing PARITY with depth-two threshold circuits; the answer turns out to be
the same as for depth-two majority circuits.
The key is a new random restriction lemma for linear threshold functions. Our
main analytical tool is the Littlewood-Offord Lemma from additive
combinatorics
Formulas vs. Circuits for Small Distance Connectivity
We give the first super-polynomial separation in the power of bounded-depth
boolean formulas vs. circuits. Specifically, we consider the problem Distance
Connectivity, which asks whether two specified nodes in a graph of size
are connected by a path of length at most . This problem is solvable
(by the recursive doubling technique) on {\bf circuits} of depth
and size . In contrast, we show that solving this problem on {\bf
formulas} of depth requires size for all . As corollaries:
(i) It follows that polynomial-size circuits for Distance Connectivity
require depth for all . This matches the
upper bound from recursive doubling and improves a previous lower bound of Beame, Pitassi and Impagliazzo [BIP98].
(ii) We get a tight lower bound of on the size required to
simulate size- depth- circuits by depth- formulas for all and . No lower bound better than
was previously known for any .
Our proof technique is centered on a new notion of pathset complexity, which
roughly speaking measures the minimum cost of constructing a set of (partial)
paths in a universe of size via the operations of union and relational
join, subject to certain density constraints. Half of our proof shows that
bounded-depth formulas solving Distance Connectivity imply upper bounds
on pathset complexity. The other half is a combinatorial lower bound on pathset
complexity
Balancing Bounded Treewidth Circuits
Algorithmic tools for graphs of small treewidth are used to address questions
in complexity theory. For both arithmetic and Boolean circuits, it is shown
that any circuit of size and treewidth can be
simulated by a circuit of width and size , where , if , and otherwise. For our main construction,
we prove that multiplicatively disjoint arithmetic circuits of size
and treewidth can be simulated by bounded fan-in arithmetic formulas of
depth . From this we derive the analogous statement for
syntactically multilinear arithmetic circuits, which strengthens a theorem of
Mahajan and Rao. As another application, we derive that constant width
arithmetic circuits of size can be balanced to depth ,
provided certain restrictions are made on the use of iterated multiplication.
Also from our main construction, we derive that Boolean bounded fan-in circuits
of size and treewidth can be simulated by bounded fan-in
formulas of depth . This strengthens in the non-uniform setting
the known inclusion that . Finally, we apply our
construction to show that {\sc reachability} for directed graphs of bounded
treewidth is in
A Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits
We study the size blow-up that is necessary to convert an algebraic circuit
of product-depth to one of product-depth in the multilinear
setting.
We show that for every positive
there is an explicit multilinear polynomial on variables
that can be computed by a multilinear formula of product-depth and
size , but not by any multilinear circuit of product-depth and
size less than . This result is tight up to the
constant implicit in the double exponent for all
This strengthens a result of Raz and Yehudayoff (Computational Complexity
2009) who prove a quasipolynomial separation for constant-depth multilinear
circuits, and a result of Kayal, Nair and Saha (STACS 2016) who give an
exponential separation in the case
Our separating examples may be viewed as algebraic analogues of variants of
the Graph Reachability problem studied by Chen, Oliveira, Servedio and Tan
(STOC 2016), who used them to prove lower bounds for constant-depth Boolean
circuits
Depth-4 Lower Bounds, Determinantal Complexity : A Unified Approach
Tavenas has recently proved that any n^{O(1)}-variate and degree n polynomial
in VP can be computed by a depth-4 circuit of size 2^{O(\sqrt{n}\log n)}. So to
prove VP not equal to VNP, it is sufficient to show that an explicit polynomial
in VNP of degree n requires 2^{\omega(\sqrt{n}\log n)} size depth-4 circuits.
Soon after Tavenas's result, for two different explicit polynomials, depth-4
circuit size lower bounds of 2^{\Omega(\sqrt{n}\log n)} have been proved Kayal
et al. and Fournier et al. In particular, using combinatorial design Kayal et
al.\ construct an explicit polynomial in VNP that requires depth-4 circuits of
size 2^{\Omega(\sqrt{n}\log n)} and Fournier et al.\ show that iterated matrix
multiplication polynomial (which is in VP) also requires 2^{\Omega(\sqrt{n}\log
n)} size depth-4 circuits.
In this paper, we identify a simple combinatorial property such that any
polynomial f that satisfies the property would achieve similar circuit size
lower bound for depth-4 circuits. In particular, it does not matter whether f
is in VP or in VNP. As a result, we get a very simple unified lower bound
analysis for the above mentioned polynomials.
Another goal of this paper is to compare between our current knowledge of
depth-4 circuit size lower bounds and determinantal complexity lower bounds. We
prove the that the determinantal complexity of iterated matrix multiplication
polynomial is \Omega(dn) where d is the number of matrices and n is the
dimension of the matrices. So for d=n, we get that the iterated matrix
multiplication polynomial achieves the current best known lower bounds in both
fronts: depth-4 circuit size and determinantal complexity. To the best of our
knowledge, a \Theta(n) bound for the determinantal complexity for the iterated
matrix multiplication polynomial was known only for constant d>1 by Jansen.Comment: Extension of the previous uploa
New algorithms and lower bounds for circuits with linear threshold gates
Let be the class of constant-depth circuits comprised of AND,
OR, and MOD gates (for some constant ), with a bottom layer of gates
computing arbitrary linear threshold functions. This class of circuits can be
seen as a "midpoint" between (where we know nontrivial lower bounds) and
depth-two linear threshold circuits (where nontrivial lower bounds remain
open).
We give an algorithm for evaluating an arbitrary symmetric function of
circuits of size , on all possible
inputs, in time. Several consequences are derived:
The number of satisfying assignments to an circuit
of subexponential size can be computed in time (where
depends on the depth and modulus of the circuit).
does not have quasi-polynomial size
circuits, nor does have quasi-polynomial size circuits.
Nontrivial size lower bounds were not known even for
circuits.
Every 0-1 integer linear program with Boolean variables and
linear constraints is solvable in time with high probability, where upper bounds the bit
complexity of the coefficients. (For example, 0-1 integer programs with weights
in and constraints can be solved in
time.)
We also present an algorithm for evaluating depth-two linear threshold
circuits (a.k.a., ) with exponential weights and size
on all input assignments, running in time. This is
evidence that non-uniform lower bounds for are within reach
Predicting Non-linear Cellular Automata Quickly by Decomposing Them into Linear Ones
We show that a wide variety of non-linear cellular automata (CAs) can be
decomposed into a quasidirect product of linear ones. These CAs can be
predicted by parallel circuits of depth O(log^2 t) using gates with binary
inputs, or O(log t) depth if ``sum mod p'' gates with an unbounded number of
inputs are allowed. Thus these CAs can be predicted by (idealized) parallel
computers much faster than by explicit simulation, even though they are
non-linear.
This class includes any CA whose rule, when written as an algebra, is a
solvable group. We also show that CAs based on nilpotent groups can be
predicted in depth O(log t) or O(1) by circuits with binary or ``sum mod p''
gates respectively.
We use these techniques to give an efficient algorithm for a CA rule which,
like elementary CA rule 18, has diffusing defects that annihilate in pairs.
This can be used to predict the motion of defects in rule 18 in O(log^2 t)
parallel time
Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits
In this paper, we prove superpolynomial lower bounds for the class of
homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP
of degree in variables such that any homogeneous depth 4 arithmetic
circuit computing it must have size .
Our results extend the works of Nisan-Wigderson [NW95] (which showed
superpolynomial lower bounds for homogeneous depth 3 circuits),
Gupta-Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [GKKS13, KSS13]
(which showed superpolynomial lower bounds for homogeneous depth 4 circuits
with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed superpolynomial
lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and
Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which
showed superpolynomial lower bounds for multilinear depth 4 circuits). Several
of these results in fact showed exponential lower bounds.
The main ingredient in our proof is a new complexity measure of {\it bounded
support} shifted partial derivatives. This measure allows us to prove
exponential lower bounds for homogeneous depth 4 circuits where all the
monomials computed at the bottom layer have {\it bounded support} (but possibly
unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et
al [GKKS13, KSS13]. This new lower bound combined with a careful "random
restriction" procedure (that transforms general depth 4 homogeneous circuits to
depth 4 circuits with bounded support) gives us our final result
- …
