55,597 research outputs found

    Location-Verification and Network Planning via Machine Learning Approaches

    Full text link
    In-region location verification (IRLV) in wireless networks is the problem of deciding if user equipment (UE) is transmitting from inside or outside a specific physical region (e.g., a safe room). The decision process exploits the features of the channel between the UE and a set of network access points (APs). We propose a solution based on machine learning (ML) implemented by a neural network (NN) trained with the channel features (in particular, noisy attenuation values) collected by the APs for various positions both inside and outside the specific region. The output is a decision on the UE position (inside or outside the region). By seeing IRLV as an hypothesis testing problem, we address the optimal positioning of the APs for minimizing either the area under the curve (AUC) of the receiver operating characteristic (ROC) or the cross entropy (CE) between the NN output and ground truth (available during the training). In order to solve the minimization problem we propose a twostage particle swarm optimization (PSO) algorithm. We show that for a long training and a NN with enough neurons the proposed solution achieves the performance of the Neyman-Pearson (N-P) lemma.Comment: Accepted for Workshop on Machine Learning for Communications, June 07 2019, Avignon, Franc

    Machine Learning and Location Verification in Vehicular Networks

    Full text link
    Location information will play a very important role in emerging wireless networks such as Intelligent Transportation Systems, 5G, and the Internet of Things. However, wrong location information can result in poor network outcomes. It is therefore critical to verify all location information before further utilization in any network operation. In recent years, a number of information-theoretic Location Verification Systems (LVSs) have been formulated in attempts to optimally verify the location information supplied by network users. Such LVSs, however, are somewhat limited since they rely on knowledge of a number of channel parameters for their operation. To overcome such limitations, in this work we introduce a Machine Learning based LVS (ML-LVS). This new form of LVS can adapt itself to changing environments without knowing the channel parameters. Here, for the first time, we use real-world data to show how our ML-LVS can outperform information-theoretic LVSs. We demonstrate this improved performance within the context of vehicular networks using Received Signal Strength (RSS) measurements at multiple verifying base stations. We also demonstrate the validity of the ML-LVS even in scenarios where a sophisticated adversary optimizes her attack location.Comment: 5 pages, 3 figure

    Machine Learning For In-Region Location Verification In Wireless Networks

    Full text link
    In-region location verification (IRLV) aims at verifying whether a user is inside a region of interest (ROI). In wireless networks, IRLV can exploit the features of the channel between the user and a set of trusted access points. In practice, the channel feature statistics is not available and we resort to machine learning (ML) solutions for IRLV. We first show that solutions based on either neural networks (NNs) or support vector machines (SVMs) and typical loss functions are Neyman-Pearson (N-P)-optimal at learning convergence for sufficiently complex learning machines and large training datasets . Indeed, for finite training, ML solutions are more accurate than the N-P test based on estimated channel statistics. Then, as estimating channel features outside the ROI may be difficult, we consider one-class classifiers, namely auto-encoders NNs and one-class SVMs, which however are not equivalent to the generalized likelihood ratio test (GLRT), typically replacing the N-P test in the one-class problem. Numerical results support the results in realistic wireless networks, with channel models including path-loss, shadowing, and fading

    Certified Reinforcement Learning with Logic Guidance

    Full text link
    This paper proposes the first model-free Reinforcement Learning (RL) framework to synthesise policies for unknown, and continuous-state Markov Decision Processes (MDPs), such that a given linear temporal property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), namely a finite-state machine expressing the property. Exploiting the structure of the LDBA, we shape a synchronous reward function on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces that probabilistically satisfy the linear temporal property. This probability (certificate) is also calculated in parallel with policy learning when the state space of the MDP is finite: as such, the RL algorithm produces a policy that is certified with respect to the property. Under the assumption of finite state space, theoretical guarantees are provided on the convergence of the RL algorithm to an optimal policy, maximising the above probability. We also show that our method produces ''best available'' control policies when the logical property cannot be satisfied. In the general case of a continuous state space, we propose a neural network architecture for RL and we empirically show that the algorithm finds satisfying policies, if there exist such policies. The performance of the proposed framework is evaluated via a set of numerical examples and benchmarks, where we observe an improvement of one order of magnitude in the number of iterations required for the policy synthesis, compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782
    • …
    corecore