6 research outputs found

    Location-Based Beamforming and Physical Layer Security in Rician Wiretap Channels

    Full text link
    We propose a new location-based beamforming (LBB) scheme for wiretap channels, where a multi-antenna source communicates with a single-antenna legitimate receiver in the presence of a multi-antenna eavesdropper. We assume that all channels are in a Rician fading environment, the channel state information from the legitimate receiver is perfectly known at the source, and that the only information on the eavesdropper available at the source is her location. We first describe how the optimal beamforming vector that minimizes the secrecy outage probability of the system is obtained, illustrating its dependence on the eavesdropper's location. We then derive an easy-to-compute expression for the secrecy outage probability when our proposed LBB scheme is adopted. We also consider the positive impact a friendly jammer can have on our beamforming solution, showing how the path to optimality remains the same. Finally, we investigate the impact of location uncertainty on the secrecy outage probability, showing how our solution can still allow for secrecy even when the source only has a noisy estimate of the eavesdropper's location. Our work demonstrates how a multi-antenna array, operating in the most general channel conditions and most likely system set-up, can be configured rapidly in the field so as to deliver an optimal physical layer security solution.Comment: 11 pages, 8 figures. Accepted for publication in IEEE Transactions on Wireless Communications. arXiv admin note: substantial text overlap with arXiv:1510.0856

    Location-Based Beamforming and Physical Layer Security in Rician Wiretap Channels

    No full text
    We propose a new location-based beamforming (LBB) scheme for wiretap channels, where a multi-antenna source communicates with a single-antenna legitimate receiver in the presence of a multi-antenna eavesdropper. We assume that all channels are in a Rician fading environment, the channel state information from the legitimate receiver is perfectly known at the source, and that the only information on the eavesdropper available at the source is her location. We first describe how the optimal beamforming vector that minimizes the secrecy outage probability of the system is obtained, illustrating its dependence on the eavesdropper's location. We then derive an easy-to-compute expression for the secrecy outage probability when our proposed LBB scheme is adopted. We also consider the positive impact a friendly jammer can have on our beamforming solution, showing how the path to optimality remains the same. Finally, we investigate the impact of location uncertainty on the secrecy outage probability, showing how our solution can still allow for secrecy even when the source only has a noisy estimate of the eavesdropper's location. This paper demonstrates how a multi-antenna array, operating in the most general channel conditions and most likely system setup, can be configured rapidly in the field so as to deliver an optimal physical layer security solution
    corecore