2,449 research outputs found

    Context-Aware Hierarchical Online Learning for Performance Maximization in Mobile Crowdsourcing

    Full text link
    In mobile crowdsourcing (MCS), mobile users accomplish outsourced human intelligence tasks. MCS requires an appropriate task assignment strategy, since different workers may have different performance in terms of acceptance rate and quality. Task assignment is challenging, since a worker's performance (i) may fluctuate, depending on both the worker's current personal context and the task context, (ii) is not known a priori, but has to be learned over time. Moreover, learning context-specific worker performance requires access to context information, which may not be available at a central entity due to communication overhead or privacy concerns. Additionally, evaluating worker performance might require costly quality assessments. In this paper, we propose a context-aware hierarchical online learning algorithm addressing the problem of performance maximization in MCS. In our algorithm, a local controller (LC) in the mobile device of a worker regularly observes the worker's context, her/his decisions to accept or decline tasks and the quality in completing tasks. Based on these observations, the LC regularly estimates the worker's context-specific performance. The mobile crowdsourcing platform (MCSP) then selects workers based on performance estimates received from the LCs. This hierarchical approach enables the LCs to learn context-specific worker performance and it enables the MCSP to select suitable workers. In addition, our algorithm preserves worker context locally, and it keeps the number of required quality assessments low. We prove that our algorithm converges to the optimal task assignment strategy. Moreover, the algorithm outperforms simpler task assignment strategies in experiments based on synthetic and real data.Comment: 18 pages, 10 figure

    SMAP: A Novel Heterogeneous Information Framework for Scenario-based Optimal Model Assignment

    Full text link
    The increasing maturity of big data applications has led to a proliferation of models targeting the same objectives within the same scenarios and datasets. However, selecting the most suitable model that considers model's features while taking specific requirements and constraints into account still poses a significant challenge. Existing methods have focused on worker-task assignments based on crowdsourcing, they neglect the scenario-dataset-model assignment problem. To address this challenge, a new problem named the Scenario-based Optimal Model Assignment (SOMA) problem is introduced and a novel framework entitled Scenario and Model Associative percepts (SMAP) is developed. SMAP is a heterogeneous information framework that can integrate various types of information to intelligently select a suitable dataset and allocate the optimal model for a specific scenario. To comprehensively evaluate models, a new score function that utilizes multi-head attention mechanisms is proposed. Moreover, a novel memory mechanism named the mnemonic center is developed to store the matched heterogeneous information and prevent duplicate matching. Six popular traffic scenarios are selected as study cases and extensive experiments are conducted on a dataset to verify the effectiveness and efficiency of SMAP and the score function

    A survey of spatial crowdsourcing

    Get PDF

    A survey of spatial crowdsourcing

    Get PDF

    e-Uber\textit{e-Uber}: A Crowdsourcing Platform for Electric Vehicle-based Ride- and Energy-sharing

    Full text link
    The sharing-economy-based business model has recently seen success in the transportation and accommodation sectors with companies like Uber and Airbnb. There is growing interest in applying this model to energy systems, with modalities like peer-to-peer (P2P) Energy Trading, Electric Vehicles (EV)-based Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H), Vehicle-to-Vehicle (V2V), and Battery Swapping Technology (BST). In this work, we exploit the increasing diffusion of EVs to realize a crowdsourcing platform called e-Uber that jointly enables ride-sharing and energy-sharing through V2G and BST. e-Uber exploits spatial crowdsourcing, reinforcement learning, and reverse auction theory. Specifically, the platform uses reinforcement learning to understand the drivers' preferences towards different ride-sharing and energy-sharing tasks. Based on these preferences, a personalized list is recommended to each driver through CMAB-based Algorithm for task Recommendation System (CARS). Drivers bid on their preferred tasks in their list in a reverse auction fashion. Then e-Uber solves the task assignment optimization problem that minimizes cost and guarantees V2G energy requirement. We prove that this problem is NP-hard and introduce a bipartite matching-inspired heuristic, Bipartite Matching-based Winner selection (BMW), that has polynomial time complexity. Results from experiments using real data from NYC taxi trips and energy consumption show that e-Uber performs close to the optimum and finds better solutions compared to a state-of-the-art approachComment: Preprint, under revie
    • …
    corecore