3,777 research outputs found

    Querying for the Largest Empty Geometric Object in a Desired Location

    Full text link
    We study new types of geometric query problems defined as follows: given a geometric set PP, preprocess it such that given a query point qq, the location of the largest circle that does not contain any member of PP, but contains qq can be reported efficiently. The geometric sets we consider for PP are boundaries of convex and simple polygons, and point sets. While we primarily focus on circles as the desired shape, we also briefly discuss empty rectangles in the context of point sets.Comment: This version is a significant update of our earlier submission arXiv:1004.0558v1. Apart from new variants studied in Sections 3 and 4, the results have been improved in Section 5.Please note that the change in title and abstract indicate that we have expanded the scope of the problems we stud

    On finding widest empty curved corridors

    Get PDF
    Open archive-ElsevierAn α-siphon of width w is the locus of points in the plane that are at the same distance w from a 1-corner polygonal chain C such that α is the interior angle of C. Given a set P of n points in the plane and a fixed angle α, we want to compute the widest empty α-siphon that splits P into two non-empty sets.We present an efficient O(n log3 n)-time algorithm for computing the widest oriented α-siphon through P such that the orientation of a half-line of C is known.We also propose an O(n3 log2 n)-time algorithm for the widest arbitrarily-oriented version and an (nlog n)-time algorithm for the widest arbitrarily-oriented α-siphon anchored at a given point

    Extensions of the Maximum Bichromatic Separating Rectangle Problem

    Full text link
    In this paper, we study two extensions of the maximum bichromatic separating rectangle (MBSR) problem introduced in \cite{Armaselu-CCCG, Armaselu-arXiv}. One of the extensions, introduced in \cite{Armaselu-FWCG}, is called \textit{MBSR with outliers} or MBSR-O, and is a more general version of the MBSR problem in which the optimal rectangle is allowed to contain up to kk outliers, where kk is given as part of the input. For MBSR-O, we improve the previous known running time bounds of O(k7mlogm+n)O(k^7 m \log m + n) to O(k3m+mlogm+n)O(k^3 m + m \log m + n). The other extension is called \textit{MBSR among circles} or MBSR-C and asks for the largest axis-aligned rectangle separating red points from blue unit circles. For MBSR-C, we provide an algorithm that runs in O(m2+n)O(m^2 + n) time.Comment: 14 pages, 14 figures, full version of CCCG pape

    Motion planning in 2D and 3D with rotation

    Get PDF
    Imperial Users onl

    Conflict-Free Coloring Made Stronger

    Full text link
    In FOCS 2002, Even et al. showed that any set of nn discs in the plane can be Conflict-Free colored with a total of at most O(logn)O(\log n) colors. That is, it can be colored with O(logn)O(\log n) colors such that for any (covered) point pp there is some disc whose color is distinct from all other colors of discs containing pp. They also showed that this bound is asymptotically tight. In this paper we prove the following stronger results: \begin{enumerate} \item [(i)] Any set of nn discs in the plane can be colored with a total of at most O(klogn)O(k \log n) colors such that (a) for any point pp that is covered by at least kk discs, there are at least kk distinct discs each of which is colored by a color distinct from all other discs containing pp and (b) for any point pp covered by at most kk discs, all discs covering pp are colored distinctively. We call such a coloring a {\em kk-Strong Conflict-Free} coloring. We extend this result to pseudo-discs and arbitrary regions with linear union-complexity. \item [(ii)] More generally, for families of nn simple closed Jordan regions with union-complexity bounded by O(n1+α)O(n^{1+\alpha}), we prove that there exists a kk-Strong Conflict-Free coloring with at most O(knα)O(k n^\alpha) colors. \item [(iii)] We prove that any set of nn axis-parallel rectangles can be kk-Strong Conflict-Free colored with at most O(klog2n)O(k \log^2 n) colors. \item [(iv)] We provide a general framework for kk-Strong Conflict-Free coloring arbitrary hypergraphs. This framework relates the notion of kk-Strong Conflict-Free coloring and the recently studied notion of kk-colorful coloring. \end{enumerate} All of our proofs are constructive. That is, there exist polynomial time algorithms for computing such colorings
    corecore