8 research outputs found

    When the Hammer Meets the Nail: Multi-Server PIR for Database-Driven CRN with Location Privacy Assurance

    Full text link
    We show that it is possible to achieve information theoretic location privacy for secondary users (SUs) in database-driven cognitive radio networks (CRNs) with an end-to-end delay less than a second, which is significantly better than that of the existing alternatives offering only a computational privacy. This is achieved based on a keen observation that, by the requirement of Federal Communications Commission (FCC), all certified spectrum databases synchronize their records. Hence, the same copy of spectrum database is available through multiple (distinct) providers. We harness the synergy between multi-server private information retrieval (PIR) and database- driven CRN architecture to offer an optimal level of privacy with high efficiency by exploiting this observation. We demonstrated, analytically and experimentally with deployments on actual cloud systems that, our adaptations of multi-server PIR outperform that of the (currently) fastest single-server PIR by a magnitude of times with information theoretic security, collusion resiliency, and fault-tolerance features. Our analysis indicates that multi-server PIR is an ideal cryptographic tool to provide location privacy in database-driven CRNs, in which the requirement of replicated databases is a natural part of the system architecture, and therefore SUs can enjoy all advantages of multi-server PIR without any additional architectural and deployment costs.Comment: 10 pages, double colum

    HySIM: A Hybrid Spectrum and Information Market for TV White Space Networks

    Full text link
    We propose a hybrid spectrum and information market for a database-assisted TV white space network, where the geo-location database serves as both a spectrum market platform and an information market platform. We study the inter- actions among the database operator, the spectrum licensee, and unlicensed users systematically, using a three-layer hierarchical model. In Layer I, the database and the licensee negotiate the commission fee that the licensee pays for using the spectrum market platform. In Layer II, the database and the licensee compete for selling information or channels to unlicensed users. In Layer III, unlicensed users determine whether they should buy the exclusive usage right of licensed channels from the licensee, or the information regarding unlicensed channels from the database. Analyzing such a three-layer model is challenging due to the co-existence of both positive and negative network externalities in the information market. We characterize how the network externalities affect the equilibrium behaviours of all parties involved. Our numerical results show that the proposed hybrid market can improve the network profit up to 87%, compared with a pure information market. Meanwhile, the achieved network profit is very close to the coordinated benchmark solution (the gap is less than 4% in our simulation).Comment: This manuscript serves as the online technical report of the article published in IEEE International Conference on Computer Communications (INFOCOM), 201
    corecore