3 research outputs found

    Locally Testable Codes and Cayley Graphs

    Full text link
    We give two new characterizations of (\F_2-linear) locally testable error-correcting codes in terms of Cayley graphs over \F_2^h: \begin{enumerate} \item A locally testable code is equivalent to a Cayley graph over \F_2^h whose set of generators is significantly larger than hh and has no short linear dependencies, but yields a shortest-path metric that embeds into โ„“1\ell_1 with constant distortion. This extends and gives a converse to a result of Khot and Naor (2006), which showed that codes with large dual distance imply Cayley graphs that have no low-distortion embeddings into โ„“1\ell_1. \item A locally testable code is equivalent to a Cayley graph over \F_2^h that has significantly more than hh eigenvalues near 1, which have no short linear dependencies among them and which "explain" all of the large eigenvalues. This extends and gives a converse to a recent construction of Barak et al. (2012), which showed that locally testable codes imply Cayley graphs that are small-set expanders but have many large eigenvalues. \end{enumerate}Comment: 22 page

    Algebraic and Combinatorial Methods in Computational Complexity

    Get PDF
    At its core, much of Computational Complexity is concerned with combinatorial objects and structures. But it has often proven true that the best way to prove things about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The PCP characterization of NP and the Agrawal-Kayal-Saxena polynomial-time primality test are two prominent examples. Recently, there have been some works going in the opposite direction, giving alternative combinatorial proofs for results that were originally proved algebraically. These alternative proofs can yield important improvements because they are closer to the underlying problems and avoid the losses in passing to the algebraic setting. A prominent example is Dinur's proof of the PCP Theorem via gap amplification which yielded short PCPs with only a polylogarithmic length blowup (which had been the focus of significant research effort up to that point). We see here (and in a number of recent works) an exciting interplay between algebraic and combinatorial techniques. This seminar aims to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic and combinatorial methods in a variety of settings
    corecore