1,578 research outputs found

    Router-level community structure of the Internet Autonomous Systems

    Get PDF
    The Internet is composed of routing devices connected between them and organized into independent administrative entities: the Autonomous Systems. The existence of different types of Autonomous Systems (like large connectivity providers, Internet Service Providers or universities) together with geographical and economical constraints, turns the Internet into a complex modular and hierarchical network. This organization is reflected in many properties of the Internet topology, like its high degree of clustering and its robustness. In this work, we study the modular structure of the Internet router-level graph in order to assess to what extent the Autonomous Systems satisfy some of the known notions of community structure. We show that the modular structure of the Internet is much richer than what can be captured by the current community detection methods, which are severely affected by resolution limits and by the heterogeneity of the Autonomous Systems. Here we overcome this issue by using a multiresolution detection algorithm combined with a small sample of nodes. We also discuss recent work on community structure in the light of our results

    Detecting Cohesive and 2-mode Communities in Directed and Undirected Networks

    Full text link
    Networks are a general language for representing relational information among objects. An effective way to model, reason about, and summarize networks, is to discover sets of nodes with common connectivity patterns. Such sets are commonly referred to as network communities. Research on network community detection has predominantly focused on identifying communities of densely connected nodes in undirected networks. In this paper we develop a novel overlapping community detection method that scales to networks of millions of nodes and edges and advances research along two dimensions: the connectivity structure of communities, and the use of edge directedness for community detection. First, we extend traditional definitions of network communities by building on the observation that nodes can be densely interlinked in two different ways: In cohesive communities nodes link to each other, while in 2-mode communities nodes link in a bipartite fashion, where links predominate between the two partitions rather than inside them. Our method successfully detects both 2-mode as well as cohesive communities, that may also overlap or be hierarchically nested. Second, while most existing community detection methods treat directed edges as though they were undirected, our method accounts for edge directions and is able to identify novel and meaningful community structures in both directed and undirected networks, using data from social, biological, and ecological domains.Comment: Published in the proceedings of WSDM '1

    Differentially Private One Permutation Hashing and Bin-wise Consistent Weighted Sampling

    Full text link
    Minwise hashing (MinHash) is a standard algorithm widely used in the industry, for large-scale search and learning applications with the binary (0/1) Jaccard similarity. One common use of MinHash is for processing massive n-gram text representations so that practitioners do not have to materialize the original data (which would be prohibitive). Another popular use of MinHash is for building hash tables to enable sub-linear time approximate near neighbor (ANN) search. MinHash has also been used as a tool for building large-scale machine learning systems. The standard implementation of MinHash requires applying KK random permutations. In comparison, the method of one permutation hashing (OPH), is an efficient alternative of MinHash which splits the data vectors into KK bins and generates hash values within each bin. OPH is substantially more efficient and also more convenient to use. In this paper, we combine the differential privacy (DP) with OPH (as well as MinHash), to propose the DP-OPH framework with three variants: DP-OPH-fix, DP-OPH-re and DP-OPH-rand, depending on which densification strategy is adopted to deal with empty bins in OPH. A detailed roadmap to the algorithm design is presented along with the privacy analysis. An analytical comparison of our proposed DP-OPH methods with the DP minwise hashing (DP-MH) is provided to justify the advantage of DP-OPH. Experiments on similarity search confirm the merits of DP-OPH, and guide the choice of the proper variant in different practical scenarios. Our technique is also extended to bin-wise consistent weighted sampling (BCWS) to develop a new DP algorithm called DP-BCWS for non-binary data. Experiments on classification tasks demonstrate that DP-BCWS is able to achieve excellent utility at around ϵ=5∼10\epsilon = 5\sim 10, where ϵ\epsilon is the standard parameter in the language of (ϵ,δ)(\epsilon, \delta)-DP

    4DGVF segmentation of vector-valued images

    Get PDF
    International audienceIn this paper, we extend the gradient vector flow field to the vector-valued case for robust variational segmentation of 4D images with active surfaces. Instead of only exploiting scalar edge strength in order to identify vector edges, we propagate both directions and amplitudes of vector gradients computed from the analysis of a structure tensor of the vector-valued image. To reduce contributions from noise in the calculation of the structure tensor, image channels are weighted according to a blind estimator of contrast that take profit of the deformable models framework. The proposed 4DGVF vector field is validated on synthetic image datasets and applied to biological volume delineation in dynamic PET imaging

    Comparing Community Structure to Characteristics in Online Collegiate Social Networks

    Get PDF
    We study the structure of social networks of students by examining the graphs of Facebook "friendships" at five American universities at a single point in time. We investigate each single-institution network's community structure and employ graphical and quantitative tools, including standardized pair-counting methods, to measure the correlations between the network communities and a set of self-identified user characteristics (residence, class year, major, and high school). We review the basic properties and statistics of the pair-counting indices employed and recall, in simplified notation, a useful analytical formula for the z-score of the Rand coefficient. Our study illustrates how to examine different instances of social networks constructed in similar environments, emphasizes the array of social forces that combine to form "communities," and leads to comparative observations about online social lives that can be used to infer comparisons about offline social structures. In our illustration of this methodology, we calculate the relative contributions of different characteristics to the community structure of individual universities and subsequently compare these relative contributions at different universities, measuring for example the importance of common high school affiliation to large state universities and the varying degrees of influence common major can have on the social structure at different universities. The heterogeneity of communities that we observe indicates that these networks typically have multiple organizing factors rather than a single dominant one.Comment: Version 3 (17 pages, 5 multi-part figures), accepted in SIAM Revie
    • …
    corecore