121,613 research outputs found

    The Role of Interactivity in Local Differential Privacy

    Full text link
    We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor k1k \geq 1 by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive kk-compositional protocol into an equivalent sequentially interactive protocol with an O(k)O(k) blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a family of problems such that for any kk, there is a fully interactive kk-compositional protocol which solves the problem, while no sequentially interactive protocol can solve the problem without at least an Ω~(k)\tilde \Omega(k) factor more examples. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems --- which include all simple hypothesis testing problems as a special case --- a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests

    Integration of Poland into EU global industrial networks: the evidence and the main challenges

    Get PDF
    In this paper, we attempt to identify the achievements of one decade of transformation of the Polish economy in effecting the integration of its manufacturing sector with those of the broader European and global economy, using the automotive industry as an illustrative example. We begin with a broad picture of the current situation in Poland, looking particularly at the motivations of EU-based investors. We then discuss the automobile industry, again examining the motives of foreign investors and the effects of policy on their behavior. Next, we examine the chief public and private actors in the integration process, with a particular focus on their roles in trying to push Poland's integration in the direction of high value added and high innovation. Finally, we briefly discuss the impact of Poland's accession to the EU on industrial networking, and then summarize our conclusions and suggest a research framework for testing the hypothesis (formulated on the basis of our observations of the Polish case) that the market orientation of a given industry, measured by the ratio of the trade balance in that industry to its total domestic output, depends among other things on ownership structure, with the domestically-owned sector tending to use locally developed technologies and the foreign-owned sector tending to transfer in technology from abroad

    Contraction of Locally Differentially Private Mechanisms

    Full text link
    We investigate the contraction properties of locally differentially private mechanisms. More specifically, we derive tight upper bounds on the divergence between PKP\mathsf{K} and QKQ\mathsf{K} output distributions of an ε\varepsilon-LDP mechanism K\mathsf{K} in terms of a divergence between the corresponding input distributions PP and QQ, respectively. Our first main technical result presents a sharp upper bound on the χ2\chi^2-divergence χ2(PKQK)\chi^2(P\mathsf{K}\|Q\mathsf{K}) in terms of χ2(PQ)\chi^2(P\|Q) and ε\varepsilon. We also show that the same result holds for a large family of divergences, including KL-divergence and squared Hellinger distance. The second main technical result gives an upper bound on χ2(PKQK)\chi^2(P\mathsf{K}\|Q\mathsf{K}) in terms of total variation distance TV(P,Q)\mathsf{TV}(P, Q) and ε\varepsilon. We then utilize these bounds to establish locally private versions of the van Trees inequality, Le Cam's, Assouad's, and the mutual information methods, which are powerful tools for bounding minimax estimation risks. These results are shown to lead to better privacy analyses than the state-of-the-arts in several statistical problems such as entropy and discrete distribution estimation, non-parametric density estimation, and hypothesis testing

    Extremal Mechanisms for Local Differential Privacy

    Full text link
    Local differential privacy has recently surfaced as a strong measure of privacy in contexts where personal information remains private even from data analysts. Working in a setting where both the data providers and data analysts want to maximize the utility of statistical analyses performed on the released data, we study the fundamental trade-off between local differential privacy and utility. This trade-off is formulated as a constrained optimization problem: maximize utility subject to local differential privacy constraints. We introduce a combinatorial family of extremal privatization mechanisms, which we call staircase mechanisms, and show that it contains the optimal privatization mechanisms for a broad class of information theoretic utilities such as mutual information and ff-divergences. We further prove that for any utility function and any privacy level, solving the privacy-utility maximization problem is equivalent to solving a finite-dimensional linear program, the outcome of which is the optimal staircase mechanism. However, solving this linear program can be computationally expensive since it has a number of variables that is exponential in the size of the alphabet the data lives in. To account for this, we show that two simple privatization mechanisms, the binary and randomized response mechanisms, are universally optimal in the low and high privacy regimes, and well approximate the intermediate regime.Comment: 52 pages, 10 figures in JMLR 201

    Social Learning with Partial Information Sharing

    Full text link
    This work addresses the problem of sharing partial information within social learning strategies. In traditional social learning, agents solve a distributed multiple hypothesis testing problem by performing two operations at each instant: first, agents incorporate information from private observations to form their beliefs over a set of hypotheses; second, agents combine the entirety of their beliefs locally among neighbors. Within a sufficiently informative environment and as long as the connectivity of the network allows information to diffuse across agents, these algorithms enable agents to learn the true hypothesis. Instead of sharing the entirety of their beliefs, this work considers the case in which agents will only share their beliefs regarding one hypothesis of interest, with the purpose of evaluating its validity, and draws conditions under which this policy does not affect truth learning. We propose two approaches for sharing partial information, depending on whether agents behave in a self-aware manner or not. The results show how different learning regimes arise, depending on the approach employed and on the inherent characteristics of the inference problem. Furthermore, the analysis interestingly points to the possibility of deceiving the network, as long as the evaluated hypothesis of interest is close enough to the truth

    Hypothesis Testing in Feedforward Networks with Broadcast Failures

    Full text link
    Consider a countably infinite set of nodes, which sequentially make decisions between two given hypotheses. Each node takes a measurement of the underlying truth, observes the decisions from some immediate predecessors, and makes a decision between the given hypotheses. We consider two classes of broadcast failures: 1) each node broadcasts a decision to the other nodes, subject to random erasure in the form of a binary erasure channel; 2) each node broadcasts a randomly flipped decision to the other nodes in the form of a binary symmetric channel. We are interested in whether there exists a decision strategy consisting of a sequence of likelihood ratio tests such that the node decisions converge in probability to the underlying truth. In both cases, we show that if each node only learns from a bounded number of immediate predecessors, then there does not exist a decision strategy such that the decisions converge in probability to the underlying truth. However, in case 1, we show that if each node learns from an unboundedly growing number of predecessors, then the decisions converge in probability to the underlying truth, even when the erasure probabilities converge to 1. We also derive the convergence rate of the error probability. In case 2, we show that if each node learns from all of its previous predecessors, then the decisions converge in probability to the underlying truth when the flipping probabilities of the binary symmetric channels are bounded away from 1/2. In the case where the flipping probabilities converge to 1/2, we derive a necessary condition on the convergence rate of the flipping probabilities such that the decisions still converge to the underlying truth. We also explicitly characterize the relationship between the convergence rate of the error probability and the convergence rate of the flipping probabilities
    corecore