2,270 research outputs found

    Tropical curves, graph complexes, and top weight cohomology of M_g

    Full text link
    We study the topology of a space parametrizing stable tropical curves of genus g with volume 1, showing that its reduced rational homology is canonically identified with both the top weight cohomology of M_g and also with the genus g part of the homology of Kontsevich's graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck-Teichmueller Lie algebra, we deduce that H^{4g-6}(M_g;Q) is nonzero for g=3, g=5, and g at least 7. This disproves a recent conjecture of Church, Farb, and Putman as well as an older, more general conjecture of Kontsevich. We also give an independent proof of another theorem of Willwacher, that homology of the graph complex vanishes in negative degrees.Comment: 31 pages. v2: streamlined exposition. Final version, to appear in J. Amer. Math. So

    Spectral preorder and perturbations of discrete weighted graphs

    Full text link
    In this article, we introduce a geometric and a spectral preorder relation on the class of weighted graphs with a magnetic potential. The first preorder is expressed through the existence of a graph homomorphism respecting the magnetic potential and fulfilling certain inequalities for the weights. The second preorder refers to the spectrum of the associated Laplacian of the magnetic weighted graph. These relations give a quantitative control of the effect of elementary and composite perturbations of the graph (deleting edges, contracting vertices, etc.) on the spectrum of the corresponding Laplacians, generalising interlacing of eigenvalues. We give several applications of the preorders: we show how to classify graphs according to these preorders and we prove the stability of certain eigenvalues in graphs with a maximal d-clique. Moreover, we show the monotonicity of the eigenvalues when passing to spanning subgraphs and the monotonicity of magnetic Cheeger constants with respect to the geometric preorder. Finally, we prove a refined procedure to detect spectral gaps in the spectrum of an infinite covering graph.Comment: 26 pages; 8 figure

    Quiver grassmannians, quiver varieties and the preprojective algebra

    Full text link
    Quivers play an important role in the representation theory of algebras, with a key ingredient being the path algebra and the preprojective algebra. Quiver grassmannians are varieties of submodules of a fixed module of the path or preprojective algebra. In the current paper, we study these objects in detail. We show that the quiver grassmannians corresponding to submodules of certain injective modules are homeomorphic to the lagrangian quiver varieties of Nakajima which have been well studied in the context of geometric representation theory. We then refine this result by finding quiver grassmannians which are homeomorphic to the Demazure quiver varieties introduced by the first author, and others which are homeomorphic to the graded/cyclic quiver varieties defined by Nakajima. The Demazure quiver grassmannians allow us to describe injective objects in the category of locally nilpotent modules of the preprojective algebra. We conclude by relating our construction to a similar one of Lusztig using projectives in place of injectives.Comment: 30 pages. v2: minor corrections and notation changes, some proofs simplified. v3: Some statements and their proofs corrected. This version incorporates an erratum to the published version. See Appendix B for detail
    corecore