4 research outputs found

    Efficient Multi-Point Local Decoding of Reed-Muller Codes via Interleaved Codex

    Get PDF
    Reed-Muller codes are among the most important classes of locally correctable codes. Currently local decoding of Reed-Muller codes is based on decoding on lines or quadratic curves to recover one single coordinate. To recover multiple coordinates simultaneously, the naive way is to repeat the local decoding for recovery of a single coordinate. This decoding algorithm might be more expensive, i.e., require higher query complexity. In this paper, we focus on Reed-Muller codes with usual parameter regime, namely, the total degree of evaluation polynomials is d=Θ(q)d=\Theta({q}), where qq is the code alphabet size (in fact, dd can be as big as q/4q/4 in our setting). By introducing a novel variation of codex, i.e., interleaved codex (the concept of codex has been used for arithmetic secret sharing \cite{C11,CCX12}), we are able to locally recover arbitrarily large number kk of coordinates of a Reed-Muller code simultaneously at the cost of querying O(q2k)O(q^2k) coordinates. It turns out that our local decoding of Reed-Muller codes shows ({\it perhaps surprisingly}) that accessing kk locations is in fact cheaper than repeating the procedure for accessing a single location for kk times. Our estimation of success error probability is based on error probability bound for tt-wise linearly independent variables given in \cite{BR94}

    Linear-time list recovery of high-rate expander codes

    Full text link
    We show that expander codes, when properly instantiated, are high-rate list recoverable codes with linear-time list recovery algorithms. List recoverable codes have been useful recently in constructing efficiently list-decodable codes, as well as explicit constructions of matrices for compressive sensing and group testing. Previous list recoverable codes with linear-time decoding algorithms have all had rate at most 1/2; in contrast, our codes can have rate 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0. We can plug our high-rate codes into a construction of Meir (2014) to obtain linear-time list recoverable codes of arbitrary rates, which approach the optimal trade-off between the number of non-trivial lists provided and the rate of the code. While list-recovery is interesting on its own, our primary motivation is applications to list-decoding. A slight strengthening of our result would implies linear-time and optimally list-decodable codes for all rates, and our work is a step in the direction of solving this important problem

    High rate locally-correctable and locally-testable codes with sub-polynomial query complexity

    Full text link
    In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length nn, constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})). Previously such codes were known to exist only with Ω(nβ)\Omega(n^{\beta}) query complexity (for constant β>0\beta > 0), and there were several, quite different, constructions known. Our codes are based on a general distance-amplification method of Alon and Luby~\cite{AL96_codes}. We show that this method interacts well with local correctors and testers, and obtain our main results by applying it to suitably constructed LCCs and LTCs in the non-standard regime of \emph{sub-constant relative distance}. Along the way, we also construct LCCs and LTCs over large alphabets, with the same query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})), which additionally have the property of approaching the Singleton bound: they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large alphabet error-correcting code to further be an LCC or LTC with exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})) query complexity does not require any sacrifice in terms of rate and distance! Such a result was previously not known for any o(n)o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters
    corecore