631 research outputs found

    Localizing Actions from Video Labels and Pseudo-Annotations

    Get PDF
    The goal of this paper is to determine the spatio-temporal location of actions in video. Where training from hard to obtain box annotations is the norm, we propose an intuitive and effective algorithm that localizes actions from their class label only. We are inspired by recent work showing that unsupervised action proposals selected with human point-supervision perform as well as using expensive box annotations. Rather than asking users to provide point supervision, we propose fully automatic visual cues that replace manual point annotations. We call the cues pseudo-annotations, introduce five of them, and propose a correlation metric for automatically selecting and combining them. Thorough evaluation on challenging action localization datasets shows that we reach results comparable to results with full box supervision. We also show that pseudo-annotations can be leveraged during testing to improve weakly- and strongly-supervised localizers.Comment: BMV

    Objects2action: Classifying and localizing actions without any video example

    Get PDF
    The goal of this paper is to recognize actions in video without the need for examples. Different from traditional zero-shot approaches we do not demand the design and specification of attribute classifiers and class-to-attribute mappings to allow for transfer from seen classes to unseen classes. Our key contribution is objects2action, a semantic word embedding that is spanned by a skip-gram model of thousands of object categories. Action labels are assigned to an object encoding of unseen video based on a convex combination of action and object affinities. Our semantic embedding has three main characteristics to accommodate for the specifics of actions. First, we propose a mechanism to exploit multiple-word descriptions of actions and objects. Second, we incorporate the automated selection of the most responsive objects per action. And finally, we demonstrate how to extend our zero-shot approach to the spatio-temporal localization of actions in video. Experiments on four action datasets demonstrate the potential of our approach

    Spatio-temporal Video Re-localization by Warp LSTM

    Full text link
    The need for efficiently finding the video content a user wants is increasing because of the erupting of user-generated videos on the Web. Existing keyword-based or content-based video retrieval methods usually determine what occurs in a video but not when and where. In this paper, we make an answer to the question of when and where by formulating a new task, namely spatio-temporal video re-localization. Specifically, given a query video and a reference video, spatio-temporal video re-localization aims to localize tubelets in the reference video such that the tubelets semantically correspond to the query. To accurately localize the desired tubelets in the reference video, we propose a novel warp LSTM network, which propagates the spatio-temporal information for a long period and thereby captures the corresponding long-term dependencies. Another issue for spatio-temporal video re-localization is the lack of properly labeled video datasets. Therefore, we reorganize the videos in the AVA dataset to form a new dataset for spatio-temporal video re-localization research. Extensive experimental results show that the proposed model achieves superior performances over the designed baselines on the spatio-temporal video re-localization task

    ActionBytes: Learning from Trimmed Videos to Localize Actions

    Get PDF

    Action Recognition by Hierarchical Mid-level Action Elements

    Full text link
    Realistic videos of human actions exhibit rich spatiotemporal structures at multiple levels of granularity: an action can always be decomposed into multiple finer-grained elements in both space and time. To capture this intuition, we propose to represent videos by a hierarchy of mid-level action elements (MAEs), where each MAE corresponds to an action-related spatiotemporal segment in the video. We introduce an unsupervised method to generate this representation from videos. Our method is capable of distinguishing action-related segments from background segments and representing actions at multiple spatiotemporal resolutions. Given a set of spatiotemporal segments generated from the training data, we introduce a discriminative clustering algorithm that automatically discovers MAEs at multiple levels of granularity. We develop structured models that capture a rich set of spatial, temporal and hierarchical relations among the segments, where the action label and multiple levels of MAE labels are jointly inferred. The proposed model achieves state-of-the-art performance in multiple action recognition benchmarks. Moreover, we demonstrate the effectiveness of our model in real-world applications such as action recognition in large-scale untrimmed videos and action parsing
    • …
    corecore