4 research outputs found

    Localized probabilistic and dominating set based algorithm for efficient information dissemination in ad hoc networks

    Get PDF
    International audienceAd hoc networks are autonomous dynamic networks composed of mobile devices like personal digital assistants (PDA) for instance. In such mobile networks, lack of infrastructure leads to non trivial information discovery and dissemination. A scheme in which a unique object centralizes information is not efficient for many reasons. In this paper, we propose a probabilistic algorithm to satisfactorily distribute an information token among nodes forming the network by using localized datas. Then, in order to limit the number of memorizing nodes, we propose to make memorize nodes belonging to a dominating se

    A Lightweight Distributed Solution to Content Replication in Mobile Networks

    Full text link
    Performance and reliability of content access in mobile networks is conditioned by the number and location of content replicas deployed at the network nodes. Facility location theory has been the traditional, centralized approach to study content replication: computing the number and placement of replicas in a network can be cast as an uncapacitated facility location problem. The endeavour of this work is to design a distributed, lightweight solution to the above joint optimization problem, while taking into account the network dynamics. In particular, we devise a mechanism that lets nodes share the burden of storing and providing content, so as to achieve load balancing, and decide whether to replicate or drop the information so as to adapt to a dynamic content demand and time-varying topology. We evaluate our mechanism through simulation, by exploring a wide range of settings and studying realistic content access mechanisms that go beyond the traditional assumptionmatching demand points to their closest content replica. Results show that our mechanism, which uses local measurements only, is: (i) extremely precise in approximating an optimal solution to content placement and replication; (ii) robust against network mobility; (iii) flexible in accommodating various content access patterns, including variation in time and space of the content demand.Comment: 12 page

    Social distributed content caching in federated residential networks

    Get PDF
    This work addresses the need for content sharing and backup in household equipped with a home gateway that stores, tags and manages the data collected by the home users. Our solution leverages the interaction between remote gateways in a social way, i.e., by exploiting the users' social networking information, so that caching recipients are those gateways whose users are most likely to be interested in accessing the shared content. We formulate this problem as a Budgeted Maximum Coverage (BMC) problem and we numerically compute the optimal content caching solution. We then propose a low-complexity, distributed heuristic algorithm and use simulation in a synthetic social network scenario to show that the final content placement among "friendly" gateways well approximates the optimal solution under different network setting
    corecore