2 research outputs found

    Localization-aware Channel Pruning for Object Detection

    Full text link
    Channel pruning is one of the important methods for deep model compression. Most of existing pruning methods mainly focus on classification. Few of them conduct systematic research on object detection. However, object detection is different from classification, which requires not only semantic information but also localization information. In this paper, based on discrimination-aware channel pruning (DCP) which is state-of-the-art pruning method for classification, we propose a localization-aware auxiliary network to find out the channels with key information for classification and regression so that we can conduct channel pruning directly for object detection, which saves lots of time and computing resources. In order to capture the localization information, we first design the auxiliary network with a contextual ROIAlign layer which can obtain precise localization information of the default boxes by pixel alignment and enlarges the receptive fields of the default boxes when pruning shallow layers. Then, we construct a loss function for object detection task which tends to keep the channels that contain the key information for classification and regression. Extensive experiments demonstrate the effectiveness of our method. On MS COCO, we prune 70\% parameters of the SSD based on ResNet-50 with modest accuracy drop, which outperforms the-state-of-art method

    UCP: Uniform Channel Pruning for Deep Convolutional Neural Networks Compression and Acceleration

    Full text link
    To apply deep CNNs to mobile terminals and portable devices, many scholars have recently worked on the compressing and accelerating deep convolutional neural networks. Based on this, we propose a novel uniform channel pruning (UCP) method to prune deep CNN, and the modified squeeze-and-excitation blocks (MSEB) is used to measure the importance of the channels in the convolutional layers. The unimportant channels, including convolutional kernels related to them, are pruned directly, which greatly reduces the storage cost and the number of calculations. There are two types of residual blocks in ResNet. For ResNet with bottlenecks, we use the pruning method with traditional CNN to trim the 3x3 convolutional layer in the middle of the blocks. For ResNet with basic residual blocks, we propose an approach to consistently prune all residual blocks in the same stage to ensure that the compact network structure is dimensionally correct. Considering that the network loses considerable information after pruning and that the larger the pruning amplitude is, the more information that will be lost, we do not choose fine-tuning but retrain from scratch to restore the accuracy of the network after pruning. Finally, we verified our method on CIFAR-10, CIFAR-100 and ILSVRC-2012 for image classification. The results indicate that the performance of the compact network after retraining from scratch, when the pruning rate is small, is better than the original network. Even when the pruning amplitude is large, the accuracy can be maintained or decreased slightly. On the CIFAR-100, when reducing the parameters and FLOPs up to 82% and 62% respectively, the accuracy of VGG-19 even improved by 0.54% after retraining.Comment: 21 pages,7 figures and 5 table
    corecore