4 research outputs found

    A Highly Reliable, Low Power Consumption, Low-Cost Multisensory Based System For Autonomous Navigational Mobile Robot

    Get PDF
    There has been remarkable growth in most real-time systems in the area of autonomous mobile robots. Collision-free path planning is one of the critical requirements in designing mobile robot systems since they all featured some obstacle detection techniques. This work focuses on the collaborations of low cost multi-sensor system to produce a complementary collision-free path for mobile robots. The proposed algorithm is used with a new model to produce the shortest, and most energy-efficient path from a given initial point to a goal point. Multiple sensors are utilized together, so the benefits of one compensate for the limitations of the other. The experimental results demonstrate that the robot is capable of measuring different distances to obstacles in unknown environments. Moreover, this work aims to minimize the energy consumption of a wheeled mobile robot in dynamic environments. The total energy consumption is evaluated in multiple directions, where both motional energy and operational energy are considered, while the robot is moving in dynamic environments and avoiding collisions. A time complexity analysis and a comparison of the proposed model, and states-of-arts methods are presented by using required resources and the overall performance of the proposed model. The proposed model is characterized by its low cost, low power consumption, and its efficiencies to follow the shortest path while avoiding collisions
    corecore