3,259 research outputs found

    Low-Resolution Fault Localization Using Phasor Measurement Units with Community Detection

    Get PDF
    A significant portion of the literature on fault localization assumes (more or less explicitly) that there are sufficient reliable measurements to guarantee that the system is observable. While several heuristics exist to break the observability barrier, they mostly rely on recognizing spatio-temporal patterns, without giving insights on how the performance are tied with the system features and the sensor deployment. In this paper, we try to fill this gap and investigate the limitations and performance limits of fault localization using Phasor Measurement Units (PMUs), in the low measurements regime, i.e., when the system is unobservable with the measurements available. Our main contribution is to show how one can leverage the scarce measurements to localize different type of distribution line faults (three-phase, single-phase to ground, ...) at the level of sub-graph, rather than with the resolution of a line. We show that the resolution we obtain is strongly tied with the graph clustering notion in network science.Comment: Accepted in IEEE SmartGridComm 2018 Conferenc

    Improved Fault Classification and Localization in Power Transmission Networks Using VAE-Generated Synthetic Data and Machine Learning Algorithms

    Get PDF
    The reliable operation of power transmission networks depends on the timely detection and localization of faults. Fault classification and localization in electricity transmission networks can be challenging because of the complicated and dynamic nature of the system. In recent years, a variety of machine learning (ML) and deep learning algorithms (DL) have found applications in the enhancement of fault identification and classification within power transmission networks. Yet, the efficacy of these ML architectures is profoundly dependent upon the abundance and quality of the training data. This intellectual explanation introduces an innovative strategy for the classification and pinpointing of faults within power transmission networks. This is achieved through the utilization of variational autoencoders (VAEs) to generate synthetic data, which in turn is harnessed in conjunction with ML algorithms. This approach encompasses the augmentation of the available dataset by infusing it with synthetically generated instances, contributing to a more robust and proficient fault recognition and categorization system. Specifically, we train the VAE on a set of real-world power transmission data and generate synthetic fault data that capture the statistical properties of real-world data. To overcome the difficulty of fault diagnosis methodology in three-phase high voltage transmission networks, a categorical boosting (Cat-Boost) algorithm is proposed in this work. The other standard machine learning algorithms recommended for this study, including Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors (KNN), utilizing the customized version of forward feature selection (FFS), were trained using synthetic data generated by a VAE. The results indicate exceptional performance, surpassing current state-of-the-art techniques, in the tasks of fault classification and localization. Notably, our approach achieves a remarkable 99% accuracy in fault classification and an extremely low mean absolute error (MAE) of 0.2 in fault localization. These outcomes represent a notable advancement compared to the most effective existing baseline methods.publishedVersio

    PPGN: Physics-Preserved Graph Networks for Real-Time Fault Location in Distribution Systems with Limited Observation and Labels

    Get PDF
    Electric faults may trigger blackouts or wildfires without timely monitoring and control strategy. Traditional solutions for locating faults in distribution systems are not real-time when network observability is low, while novel black-box machine learning methods are vulnerable to stochastic environments. We propose a novel Physics-Preserved Graph Network (PPGN) architecture to accurately locate faults at the node level with limited observability and labeled training data. PPGN has a unique two-stage graph neural network architecture. The first stage learns the graph embedding to represent the entire network using a few measured nodes. The second stage finds relations between the labeled and unlabeled data samples to further improve the location accuracy. We explain the benefits of the two-stage graph configuration through a random walk equivalence. We numerically validate the proposed method in the IEEE 123-node and 37-node test feeders, demonstrating the superior performance over three baseline classifiers when labeled training data is limited, and loads and topology are allowed to vary

    Physics-Informed Machine Learning for Data Anomaly Detection, Classification, Localization, and Mitigation: A Review, Challenges, and Path Forward

    Full text link
    Advancements in digital automation for smart grids have led to the installation of measurement devices like phasor measurement units (PMUs), micro-PMUs (μ\mu-PMUs), and smart meters. However, a large amount of data collected by these devices brings several challenges as control room operators need to use this data with models to make confident decisions for reliable and resilient operation of the cyber-power systems. Machine-learning (ML) based tools can provide a reliable interpretation of the deluge of data obtained from the field. For the decision-makers to ensure reliable network operation under all operating conditions, these tools need to identify solutions that are feasible and satisfy the system constraints, while being efficient, trustworthy, and interpretable. This resulted in the increasing popularity of physics-informed machine learning (PIML) approaches, as these methods overcome challenges that model-based or data-driven ML methods face in silos. This work aims at the following: a) review existing strategies and techniques for incorporating underlying physical principles of the power grid into different types of ML approaches (supervised/semi-supervised learning, unsupervised learning, and reinforcement learning (RL)); b) explore the existing works on PIML methods for anomaly detection, classification, localization, and mitigation in power transmission and distribution systems, c) discuss improvements in existing methods through consideration of potential challenges while also addressing the limitations to make them suitable for real-world applications

    Online monitoring and diagnosis of HV cable faults by sheath system currents

    Get PDF
    corecore