9 research outputs found

    Localization of abnormal EEG sources using blind source separation partially constrained by the locations of known sources

    Get PDF
    Electroencephalogram (EEG) source localization requires a solution to an ill-posed inverse problem. The additional challenge is to solve this problem in the context of multiple moving sources. An effective and simple technique for both separation and localization of EEG sources is therefore proposed by incorporating an algorithmically coupled blind source separation (BSS) approach. The method relies upon having a priori knowledge of the locations of a subset of the sources. The cost function of the BSS algorithm is constrained by this information, and the unknown sources are iteratively calculated. An important application of this method is to localize abnormal sources, which, for example, cause changes in attention, movement, and behavior. In this application, the Alpha rhythm was considered as the known sources. Simulation studies are presented to support the potential of the approach in terms of source localization

    Localization of abnormal EEG sources using blind source separation partially constrained by the locations of known sources

    No full text
    Electroencephalogram (EEG) source localization requires a solution to an ill-posed inverse problem. The additional challenge is to solve this problem in the context of multiple moving sources. An effective and simple technique for both separation and localization of EEG sources is therefore proposed by incorporating an algorithmically coupled blind source separation (BSS) approach. The method relies upon having a priori knowledge of the locations of a subset of the sources. The cost function of the BSS algorithm is constrained by this information, and the unknown sources are iteratively calculated. An important application of this method is to localize abnormal sources, which, for example, cause changes in attention, movement, and behavior. In this application, the Alpha rhythm was considered as the known sources. Simulation studies are presented to support the potential of the approach in terms of source localization

    Localization of abnormal EEG sources using blind source separation partially constrained by the locations of known sources

    No full text
    Electroencephalogram (EEG) source localization requires a solution to an ill-posed inverse problem. The additional challenge is to solve this problem in the context of multiple moving sources. An effective and simple technique for both separation and localization of EEG sources is therefore proposed by incorporating an algorithmically coupled blind source separation (BSS) approach. The method relies upon having a priori knowledge of the locations of a subset of the sources. The cost function of the BSS algorithm is constrained by this information, and the unknown sources are iteratively calculated. An important application of this method is to localize abnormal sources, which, for example, cause changes in attention, movement, and behavior. In this application, the Alpha rhythm was considered as the known sources. Simulation studies are presented to support the potential of the approach in terms of source localization

    Localization of brain signal sources using blind source separation

    Get PDF
    Reliable localization of brain signal sources by using convenient, easy, and hazardless data acquisition techniques can potentially play a key role in the understanding, analysis, and tracking of brain activities for determination of physiological, pathological, and functional abnormalities. The sources can be due to normal brain activities, mental disorders, stimulation of the brain, or movement related tasks. The focus of this thesis is therefore the development of novel source localization techniques based upon EEG measurements. Independent component analysis is used in blind separation (BSS) of the EEG sources to yield three different approaches for source localization. In the first method the sources are localized over the scalp pattern using BSS in various subbands, and by investigating the number of components which are likely to be the true sources. In the second method, the sources are separated and their corresponding topographical information is used within a least-squares algorithm to localize the sources within the brain region. The locations of the known sources, such as some normal brain rhythms, are also utilized to help in determining the unknown sources. The final approach is an effective BSS algorithm partially constrained by information related to the known sources. In addition, some investigation have been undertaken to incorporate non-homogeneity of the head layers in terms of the changes in electrical and magnetic characteristics and also with respect to the noise level within the processing methods. Experimental studies with real and synthetic data sets are undertaken using MATLAB and the efficacy of each method discussed

    Brain signal analysis in space-time-frequency domain : an application to brain computer interfacing

    Get PDF
    In this dissertation, advanced methods for electroencephalogram (EEG) signal analysis in the space-time-frequency (STF) domain with applications to eye-blink (EB) artifact removal and brain computer interfacing (BCI) are developed. The two methods for EB artifact removal from EEGs are presented which respectively include the estimated spatial signatures of the EB artifacts into the signal extraction and the robust beamforming frameworks. In the developed signal extraction algorithm, the EB artifacts are extracted as uncorrelated signals from EEGs. The algorithm utilizes the spatial signatures of the EB artifacts as priori knowledge in the signal extraction stage. The spatial distributions are identified using the STF model of EEGs. In the robust beamforming approach, first a novel space-time-frequency/time-segment (STF-TS) model for EEGs is introduced. The estimated spatial signatures of the EBs are then taken into account in order to restore the artifact contaminated EEG measurements. Both algorithms are evaluated by using the simulated and real EEGs and shown to produce comparable results to that of conventional approaches. Finally, an effective paradigm for BCI is introduced. In this approach prior physiological knowledge of spectrally band limited steady-state movement related potentials is exploited. The results consolidate the method.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Brain signal analysis in space-time-frequency domain: an application to brain computer interfacing

    Get PDF
    In this dissertation, advanced methods for electroencephalogram (EEG) signal analysis in the space-time-frequency (STF) domain with applications to eye-blink (EB) artifact removal and brain computer interfacing (BCI) are developed. The two methods for EB artifact removal from EEGs are presented which respectively include the estimated spatial signatures of the EB artifacts into the signal extraction and the robust beamforming frameworks. In the developed signal extraction algorithm, the EB artifacts are extracted as uncorrelated signals from EEGs. The algorithm utilizes the spatial signatures of the EB artifacts as priori knowledge in the signal extraction stage. The spatial distributions are identified using the STF model of EEGs. In the robust beamforming approach, first a novel space-time-frequency/time-segment (STF-TS) model for EEGs is introduced. The estimated spatial signatures of the EBs are then taken into account in order to restore the artifact contaminated EEG measurements. Both algorithms are evaluated by using the simulated and real EEGs and shown to produce comparable results to that of conventional approaches. Finally, an effective paradigm for BCI is introduced. In this approach prior physiological knowledge of spectrally band limited steady-state movement related potentials is exploited. The results consolidate the method
    corecore