699 research outputs found

    Unsupervised Multi-modal Hashing for Cross-modal retrieval

    Full text link
    With the advantage of low storage cost and high efficiency, hashing learning has received much attention in the domain of Big Data. In this paper, we propose a novel unsupervised hashing learning method to cope with this open problem to directly preserve the manifold structure by hashing. To address this problem, both the semantic correlation in textual space and the locally geometric structure in the visual space are explored simultaneously in our framework. Besides, the `2;1-norm constraint is imposed on the projection matrices to learn the discriminative hash function for each modality. Extensive experiments are performed to evaluate the proposed method on the three publicly available datasets and the experimental results show that our method can achieve superior performance over the state-of-the-art methods.Comment: 4 pages, 4 figure

    Graph based manifold regularized deep neural networks for automatic speech recognition

    Full text link
    Deep neural networks (DNNs) have been successfully applied to a wide variety of acoustic modeling tasks in recent years. These include the applications of DNNs either in a discriminative feature extraction or in a hybrid acoustic modeling scenario. Despite the rapid progress in this area, a number of challenges remain in training DNNs. This paper presents an effective way of training DNNs using a manifold learning based regularization framework. In this framework, the parameters of the network are optimized to preserve underlying manifold based relationships between speech feature vectors while minimizing a measure of loss between network outputs and targets. This is achieved by incorporating manifold based locality constraints in the objective criterion of DNNs. Empirical evidence is provided to demonstrate that training a network with manifold constraints preserves structural compactness in the hidden layers of the network. Manifold regularization is applied to train bottleneck DNNs for feature extraction in hidden Markov model (HMM) based speech recognition. The experiments in this work are conducted on the Aurora-2 spoken digits and the Aurora-4 read news large vocabulary continuous speech recognition tasks. The performance is measured in terms of word error rate (WER) on these tasks. It is shown that the manifold regularized DNNs result in up to 37% reduction in WER relative to standard DNNs.Comment: 12 pages including citations, 2 figure

    SADIH: Semantic-Aware DIscrete Hashing

    Full text link
    Due to its low storage cost and fast query speed, hashing has been recognized to accomplish similarity search in large-scale multimedia retrieval applications. Particularly supervised hashing has recently received considerable research attention by leveraging the label information to preserve the pairwise similarities of data points in the Hamming space. However, there still remain two crucial bottlenecks: 1) the learning process of the full pairwise similarity preservation is computationally unaffordable and unscalable to deal with big data; 2) the available category information of data are not well-explored to learn discriminative hash functions. To overcome these challenges, we propose a unified Semantic-Aware DIscrete Hashing (SADIH) framework, which aims to directly embed the transformed semantic information into the asymmetric similarity approximation and discriminative hashing function learning. Specifically, a semantic-aware latent embedding is introduced to asymmetrically preserve the full pairwise similarities while skillfully handle the cumbersome n times n pairwise similarity matrix. Meanwhile, a semantic-aware autoencoder is developed to jointly preserve the data structures in the discriminative latent semantic space and perform data reconstruction. Moreover, an efficient alternating optimization algorithm is proposed to solve the resulting discrete optimization problem. Extensive experimental results on multiple large-scale datasets demonstrate that our SADIH can clearly outperform the state-of-the-art baselines with the additional benefit of lower computational costs.Comment: Accepted by The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Learning to Hash for Indexing Big Data - A Survey

    Full text link
    The explosive growth in big data has attracted much attention in designing efficient indexing and search methods recently. In many critical applications such as large-scale search and pattern matching, finding the nearest neighbors to a query is a fundamental research problem. However, the straightforward solution using exhaustive comparison is infeasible due to the prohibitive computational complexity and memory requirement. In response, Approximate Nearest Neighbor (ANN) search based on hashing techniques has become popular due to its promising performance in both efficiency and accuracy. Prior randomized hashing methods, e.g., Locality-Sensitive Hashing (LSH), explore data-independent hash functions with random projections or permutations. Although having elegant theoretic guarantees on the search quality in certain metric spaces, performance of randomized hashing has been shown insufficient in many real-world applications. As a remedy, new approaches incorporating data-driven learning methods in development of advanced hash functions have emerged. Such learning to hash methods exploit information such as data distributions or class labels when optimizing the hash codes or functions. Importantly, the learned hash codes are able to preserve the proximity of neighboring data in the original feature spaces in the hash code spaces. The goal of this paper is to provide readers with systematic understanding of insights, pros and cons of the emerging techniques. We provide a comprehensive survey of the learning to hash framework and representative techniques of various types, including unsupervised, semi-supervised, and supervised. In addition, we also summarize recent hashing approaches utilizing the deep learning models. Finally, we discuss the future direction and trends of research in this area

    First-Take-All: Temporal Order-Preserving Hashing for 3D Action Videos

    Full text link
    With the prevalence of the commodity depth cameras, the new paradigm of user interfaces based on 3D motion capturing and recognition have dramatically changed the way of interactions between human and computers. Human action recognition, as one of the key components in these devices, plays an important role to guarantee the quality of user experience. Although the model-driven methods have achieved huge success, they cannot provide a scalable solution for efficiently storing, retrieving and recognizing actions in the large-scale applications. These models are also vulnerable to the temporal translation and warping, as well as the variations in motion scales and execution rates. To address these challenges, we propose to treat the 3D human action recognition as a video-level hashing problem and propose a novel First-Take-All (FTA) Hashing algorithm capable of hashing the entire video into hash codes of fixed length. We demonstrate that this FTA algorithm produces a compact representation of the video invariant to the above mentioned variations, through which action recognition can be solved by an efficient nearest neighbor search by the Hamming distance between the FTA hash codes. Experiments on the public 3D human action datasets shows that the FTA algorithm can reach a recognition accuracy higher than 80%, with about 15 bits per frame considering there are 65 frames per video over the datasets.Comment: 9 pages, 11 figure

    Discriminative Supervised Hashing for Cross-Modal similarity Search

    Full text link
    With the advantage of low storage cost and high retrieval efficiency, hashing techniques have recently been an emerging topic in cross-modal similarity search. As multiple modal data reflect similar semantic content, many researches aim at learning unified binary codes. However, discriminative hashing features learned by these methods are not adequate. This results in lower accuracy and robustness. We propose a novel hashing learning framework which jointly performs classifier learning, subspace learning and matrix factorization to preserve class-specific semantic content, termed Discriminative Supervised Hashing (DSH), to learn the discrimative unified binary codes for multi-modal data. Besides, reducing the loss of information and preserving the non-linear structure of data, DSH non-linearly projects different modalities into the common space in which the similarity among heterogeneous data points can be measured. Extensive experiments conducted on the three publicly available datasets demonstrate that the framework proposed in this paper outperforms several state-of -the-art methods.Comment: 7 pages,3 figures,4 tables;The paper is under consideration at Image and Vision Computin

    Deep LDA Hashing

    Full text link
    The conventional supervised hashing methods based on classification do not entirely meet the requirements of hashing technique, but Linear Discriminant Analysis (LDA) does. In this paper, we propose to perform a revised LDA objective over deep networks to learn efficient hashing codes in a truly end-to-end fashion. However, the complicated eigenvalue decomposition within each mini-batch in every epoch has to be faced with when simply optimizing the deep network w.r.t. the LDA objective. In this work, the revised LDA objective is transformed into a simple least square problem, which naturally overcomes the intractable problems and can be easily solved by the off-the-shelf optimizer. Such deep extension can also overcome the weakness of LDA Hashing in the limited linear projection and feature learning. Amounts of experiments are conducted on three benchmark datasets. The proposed Deep LDA Hashing shows nearly 70 points improvement over the conventional one on the CIFAR-10 dataset. It also beats several state-of-the-art methods on various metrics.Comment: 10 pages, 3 figure

    Set-to-Set Hashing with Applications in Visual Recognition

    Full text link
    Visual data, such as an image or a sequence of video frames, is often naturally represented as a point set. In this paper, we consider the fundamental problem of finding a nearest set from a collection of sets, to a query set. This problem has obvious applications in large-scale visual retrieval and recognition, and also in applied fields beyond computer vision. One challenge stands out in solving the problem---set representation and measure of similarity. Particularly, the query set and the sets in dataset collection can have varying cardinalities. The training collection is large enough such that linear scan is impractical. We propose a simple representation scheme that encodes both statistical and structural information of the sets. The derived representations are integrated in a kernel framework for flexible similarity measurement. For the query set process, we adopt a learning-to-hash pipeline that turns the kernel representations into hash bits based on simple learners, using multiple kernel learning. Experiments on two visual retrieval datasets show unambiguously that our set-to-set hashing framework outperforms prior methods that do not take the set-to-set search setting.Comment: 9 page

    Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search

    Full text link
    Hash based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over state-of-the-art methods

    Deep Ordinal Hashing with Spatial Attention

    Full text link
    Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods
    • …
    corecore