18 research outputs found

    On a suggestion relating topological and quantum mechanical entanglements

    Full text link
    We analyze a recent suggestion \cite{kauffman1,kauffman2} on a possible relation between topological and quantum mechanical entanglements. We show that a one to one correspondence does not exist, neither between topologically linked diagrams and entangled states, nor between braid operators and quantum entanglers. We also add a new dimension to the question of entangling properties of unitary operators in general.Comment: RevTex, 7 eps figures, to be published in Phys. Lett. A (2004

    Teleportation, Braid Group and Temperley--Lieb Algebra

    Full text link
    We explore algebraic and topological structures underlying the quantum teleportation phenomena by applying the braid group and Temperley--Lieb algebra. We realize the braid teleportation configuration, teleportation swapping and virtual braid representation in the standard description of the teleportation. We devise diagrammatic rules for quantum circuits involving maximally entangled states and apply them to three sorts of descriptions of the teleportation: the transfer operator, quantum measurements and characteristic equations, and further propose the Temperley--Lieb algebra under local unitary transformations to be a mathematical structure underlying the teleportation. We compare our diagrammatical approach with two known recipes to the quantum information flow: the teleportation topology and strongly compact closed category, in order to explain our diagrammatic rules to be a natural diagrammatic language for the teleportation.Comment: 33 pages, 19 figures, latex. The present article is a short version of the preprint, quant-ph/0601050, which includes details of calculation, more topics such as topological diagrammatical operations and entanglement swapping, and calls the Temperley--Lieb category for the collection of all the Temperley--Lieb algebra with physical operations like local unitary transformation

    Towards topological quantum computer

    Full text link
    One of the principal obstacles on the way to quantum computers is the lack of distinguished basis in the space of unitary evolutions and thus the lack of the commonly accepted set of basic operations (universal gates). A natural choice, however, is at hand: it is provided by the quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, distinguished from the points of view of group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Observables in this case are (square modules of) the knot polynomials, and their pronounced integrality properties could provide a key to error correction. We suggest to use R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, to build a topological version of quantum computing.Comment: 14 page

    Studies Of A Quantum Scheduling Algorithm And On Quantum Error Correction

    Get PDF
    Quantum computation has been a rich field of study for decades because it promises possible spectacular advances, some of which may run counter to our classically rooted intuitions. At the same time, quantum computation is still in its infancy in both theoretical and practical areas. Efficient quantum algorithms are very limited in number and scope; no real breakthrough has yet been achieved in physical implementations. Grover\u27s search algorithm can be applied to a wide range of problems; even problems not generally regarded as searching problems can be reformulated to take advantage of quantum parallelism and entanglement leading to algorithms which show a square root speedup over their classical counterparts. This dissertation discusses a systematic way to formulate such problems and gives as an example a quantum scheduling algorithm for an R||C_max problem. This thesis shows that quantum solution to such problems is not only feasible but in some cases advantageous. The complexity of the error correction circuitry forces us to design quantum error correction codes capable of correcting only a single error per error correction cycle. Yet, time-correlated errors are common for physical implementations of quantum systems; an error corrected during a certain cycle may reoccur in a later cycle due to physical processes specific to each physical implementation of the qubits. This dissertation discusses quantum error correction for a restricted class of time-correlated errors in a spin-boson model. The algorithm proposed allows the correction of two errors per error correction cycle, provided that one of them is time-correlated. The algorithm can be applied to any stabilizer code, perfect or non-perfect, and simplified the circuit complexity significantly comparing to the classic quantum error correction codes
    corecore