550 research outputs found

    Local resilience of spanning subgraphs in sparse random graphs

    Get PDF
    For each real γ>0γ>0 and integers Δ≥2Δ≥2 and k≥1k≥1, we prove that there exist constants β>0β>0 and C>0C>0 such that for all p≥C(log⁡n/n)1/Δp≥C(log⁡n/n)1/Δ the random graph G(n,p)G(n,p) asymptotically almost surely contains – even after an adversary deletes an arbitrary (1/k−γ1/k−γ)-fraction of the edges at every vertex – a copy of every n-vertex graph with maximum degree at most Δ, bandwidth at most βn and at least Cmax⁡{p−2,p−1log⁡n}Cmax⁡{p−2,p−1log⁡n} vertices not in triangles

    Almost spanning subgraphs of random graphs after adversarial edge removal

    Full text link
    Let Delta>1 be a fixed integer. We show that the random graph G(n,p) with p>>(log n/n)^{1/Delta} is robust with respect to the containment of almost spanning bipartite graphs H with maximum degree Delta and sublinear bandwidth in the following sense: asymptotically almost surely, if an adversary deletes arbitrary edges in G(n,p) such that each vertex loses less than half of its neighbours, then the resulting graph still contains a copy of all such H.Comment: 46 pages, 6 figure

    Local resilience for squares of almost spanning cycles in sparse random graphs

    Full text link
    In 1962, P\'osa conjectured that a graph G=(V,E)G=(V, E) contains a square of a Hamiltonian cycle if δ(G)2n/3\delta(G)\ge 2n/3. Only more than thirty years later Koml\'os, S\'ark\H{o}zy, and Szemer\'edi proved this conjecture using the so-called Blow-Up Lemma. Here we extend their result to a random graph setting. We show that for every ϵ>0\epsilon > 0 and p=n1/2+ϵp=n^{-1/2+\epsilon} a.a.s. every subgraph of Gn,pG_{n,p} with minimum degree at least (2/3+ϵ)np(2/3+\epsilon)np contains the square of a cycle on (1o(1))n(1-o(1))n vertices. This is almost best possible in three ways: (1) for pn1/2p\ll n^{-1/2} the random graph will not contain any square of a long cycle (2) one cannot hope for a resilience version for the square of a spanning cycle (as deleting all edges in the neighborhood of single vertex destroys this property) and (3) for c<2/3c<2/3 a.a.s. Gn,pG_{n,p} contains a subgraph with minimum degree at least cnpcnp which does not contain the square of a path on (1/3+c)n(1/3+c)n vertices

    Dirac's theorem for random regular graphs

    Get PDF
    We prove a `resilience' version of Dirac's theorem in the setting of random regular graphs. More precisely, we show that, whenever dd is sufficiently large compared to ε>0\varepsilon>0, a.a.s. the following holds: let GG' be any subgraph of the random nn-vertex dd-regular graph Gn,dG_{n,d} with minimum degree at least (1/2+ε)d(1/2+\varepsilon)d. Then GG' is Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly, the condition that dd is large cannot be omitted, and secondly, the minimum degree bound cannot be improved.Comment: Final accepted version, to appear in Combinatorics, Probability & Computin

    Local resilience of an almost spanning kk-cycle in random graphs

    Full text link
    The famous P\'{o}sa-Seymour conjecture, confirmed in 1998 by Koml\'{o}s, S\'{a}rk\"{o}zy, and Szemer\'{e}di, states that for any k2k \geq 2, every graph on nn vertices with minimum degree kn/(k+1)kn/(k + 1) contains the kk-th power of a Hamilton cycle. We extend this result to a sparse random setting. We show that for every k2k \geq 2 there exists C>0C > 0 such that if pC(logn/n)1/kp \geq C(\log n/n)^{1/k} then w.h.p. every subgraph of a random graph Gn,pG_{n, p} with minimum degree at least (k/(k+1)+o(1))np(k/(k + 1) + o(1))np, contains the kk-th power of a cycle on at least (1o(1))n(1 - o(1))n vertices, improving upon the recent results of Noever and Steger for k=2k = 2, as well as Allen et al. for k3k \geq 3. Our result is almost best possible in three ways: for pn1/kp \ll n^{-1/k} the random graph Gn,pG_{n, p} w.h.p. does not contain the kk-th power of any long cycle; there exist subgraphs of Gn,pG_{n, p} with minimum degree (k/(k+1)+o(1))np(k/(k + 1) + o(1))np and Ω(p2)\Omega(p^{-2}) vertices not belonging to triangles; there exist subgraphs of Gn,pG_{n, p} with minimum degree (k/(k+1)o(1))np(k/(k + 1) - o(1))np which do not contain the kk-th power of a cycle on (1o(1))n(1 - o(1))n vertices.Comment: 24 pages; small updates to the paper after anonymous reviewers' report

    Generating random graphs in biased Maker-Breaker games

    Full text link
    We present a general approach connecting biased Maker-Breaker games and problems about local resilience in random graphs. We utilize this approach to prove new results and also to derive some known results about biased Maker-Breaker games. In particular, we show that for b=o(n)b=o\left(\sqrt{n}\right), Maker can build a pancyclic graph (that is, a graph that contains cycles of every possible length) while playing a (1:b)(1:b) game on E(Kn)E(K_n). As another application, we show that for b=Θ(n/lnn)b=\Theta\left(n/\ln n\right), playing a (1:b)(1:b) game on E(Kn)E(K_n), Maker can build a graph which contains copies of all spanning trees having maximum degree Δ=O(1)\Delta=O(1) with a bare path of linear length (a bare path in a tree TT is a path with all interior vertices of degree exactly two in TT)

    Bandwidth theorem for random graphs

    Full text link
    A graph GG is said to have \textit{bandwidth} at most bb, if there exists a labeling of the vertices by 1,2,...,n1,2,..., n, so that ijb|i - j| \leq b whenever {i,j}\{i,j\} is an edge of GG. Recently, B\"{o}ttcher, Schacht, and Taraz verified a conjecture of Bollob\'{a}s and Koml\'{o}s which says that for every positive r,Δ,γr,\Delta,\gamma, there exists β\beta such that if HH is an nn-vertex rr-chromatic graph with maximum degree at most Δ\Delta which has bandwidth at most βn\beta n, then any graph GG on nn vertices with minimum degree at least (11/r+γ)n(1 - 1/r + \gamma)n contains a copy of HH for large enough nn. In this paper, we extend this theorem to dense random graphs. For bipartite HH, this answers an open question of B\"{o}ttcher, Kohayakawa, and Taraz. It appears that for non-bipartite HH the direct extension is not possible, and one needs in addition that some vertices of HH have independent neighborhoods. We also obtain an asymptotically tight bound for the maximum number of vertex disjoint copies of a fixed rr-chromatic graph H0H_0 which one can find in a spanning subgraph of G(n,p)G(n,p) with minimum degree (11/r+γ)np(1-1/r + \gamma)np.Comment: 29 pages, 3 figure
    corecore