39,713 research outputs found

    Diffusion and Cascading Behavior in Random Networks

    Full text link
    The spread of new ideas, behaviors or technologies has been extensively studied using epidemic models. Here we consider a model of diffusion where the individuals' behavior is the result of a strategic choice. We study a simple coordination game with binary choice and give a condition for a new action to become widespread in a random network. We also analyze the possible equilibria of this game and identify conditions for the coexistence of both strategies in large connected sets. Finally we look at how can firms use social networks to promote their goals with limited information. Our results differ strongly from the one derived with epidemic models and show that connectivity plays an ambiguous role: while it allows the diffusion to spread, when the network is highly connected, the diffusion is also limited by high-degree nodes which are very stable

    Deterministic Equations for Stochastic Spatial Evolutionary Games

    Get PDF
    Spatial evolutionary games model individuals who are distributed in a spatial domain and update their strategies upon playing a normal form game with their neighbors. We derive integro-differential equations as deterministic approximations of the microscopic updating stochastic processes. This generalizes the known mean-field ordinary differential equations and provide a powerful tool to investigate the spatial effects in populations evolution. The deterministic equations allow to identify many interesting features of the evolution of strategy profiles in a population, such as standing and traveling waves, and pattern formation, especially in replicator-type evolutions

    Crises and collective socio-economic phenomena: simple models and challenges

    Full text link
    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the Random Field Ising model (RFIM) indeed provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilising self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can badly fail at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria to be reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.Comment: Review paper accepted for a special issue of J Stat Phys; several minor improvements along reviewers' comment

    The Self-Organisation of Strategic Alliances

    Get PDF
    Strategic alliances form a vital part of today's business environment. The sheer variety of collaborative forms is notable - which include R&D coalitions, marketing and distribution agreements, franchising, co-production agreements, licensing, consortiums and joint ventures. Here we define a strategic alliance as a cooperative agreement between two or more autonomous firms pursuing common objectives or working towards solving common problems through a period of sustained interaction. A distinction is commonly made between 'formal' and 'informal' inter-firm alliances. Informal alliances involve voluntary contact and interaction while in formal alliances cooperation is governed by a contractual agreement. The advantage of formal alliances is the ability to put in place IPR clauses, confidentially agreements and other contractual measures designed to safeguard the firm against knowledge spill-over. However, these measures are costly to instigate and police. By contrast, a key attraction of informal relationships is their low co-ordination costs. Informal know-how trading is relatively simple, uncomplicated and more flexible, and has been observed in a number of industries. A number of factors affecting firms' decisions to cooperate or not cooperate within strategic alliances have been raised in the literature. In this paper we consider three factors in particular: the relative costs of coordinating activity through strategic alliances vis-a-vis the costs of coordinating activity in-house, the degree of uncertainty present in the competitive environment, and the feedback between individual decision-making and industry structure. Whereas discussion of the first two factors is well developed in the strategic alliance literature, the third factor has hitherto only been addressed indirectly. The contribution to this under-researched area represents an important contribution of this paper to the current discourse. In order to focus the discussion, the paper considers the formation of horizontal inter-firm strategic alliances in dynamic product markets. These markets are characterised by rapid rates of technological change, a high degree of market uncertainty, and high rewards (supernormal profits) for successful firms offset by shortening life cycles.Strategic Alliances, Innovation Networks, Self-Organisation

    Spillovers diffusion inside networks of cooperation: the role of temporary geographical and organisational proximities.

    Get PDF
    The objective of this article is to examine the diffusion of spillovers within technological cooperation. More precisely, we shall ask to what extent permanent geographic proximity, defined, as co-location by the geography of innovation, is really necessary to benefit from spillovers when agents cooperate. It turns out that co-localisation is not a sufficient condition; geographic proximity is often required but it can be temporary. This condition must be linked with organisational proximity to be effective. Then, it appears that spillovers are not “in the air(s)” but in networks.Spillovers; Technological cooperation; Geographic proximity; Organisational proximity; A-spatial network;
    • 

    corecore