99,986 research outputs found

    Approximate Nearest Neighbor Fields in Video

    Full text link
    We introduce RIANN (Ring Intersection Approximate Nearest Neighbor search), an algorithm for matching patches of a video to a set of reference patches in real-time. For each query, RIANN finds potential matches by intersecting rings around key points in appearance space. Its search complexity is reversely correlated to the amount of temporal change, making it a good fit for videos, where typically most patches change slowly with time. Experiments show that RIANN is up to two orders of magnitude faster than previous ANN methods, and is the only solution that operates in real-time. We further demonstrate how RIANN can be used for real-time video processing and provide examples for a range of real-time video applications, including colorization, denoising, and several artistic effects.Comment: A CVPR 2015 oral pape

    FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search

    Full text link
    We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for \textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2Dn^2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results

    Fast Exact Search in Hamming Space with Multi-Index Hashing

    Full text link
    There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straightforward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits
    • …
    corecore