4 research outputs found

    Change Detection from SAR Images Based on Deformable Residual Convolutional Neural Networks

    Full text link
    Convolutional neural networks (CNN) have made great progress for synthetic aperture radar (SAR) images change detection. However, sampling locations of traditional convolutional kernels are fixed and cannot be changed according to the actual structure of the SAR images. Besides, objects may appear with different sizes in natural scenes, which requires the network to have stronger multi-scale representation ability. In this paper, a novel \underline{D}eformable \underline{R}esidual Convolutional Neural \underline{N}etwork (DRNet) is designed for SAR images change detection. First, the proposed DRNet introduces the deformable convolutional sampling locations, and the shape of convolutional kernel can be adaptively adjusted according to the actual structure of ground objects. To create the deformable sampling locations, 2-D offsets are calculated for each pixel according to the spatial information of the input images. Then the sampling location of pixels can adaptively reflect the spatial structure of the input images. Moreover, we proposed a novel pooling module replacing the vanilla pooling to utilize multi-scale information effectively, by constructing hierarchical residual-like connections within one pooling layer, which improve the multi-scale representation ability at a granular level. Experimental results on three real SAR datasets demonstrate the effectiveness of the proposed DRNet.Comment: Accepted by ACM Multimedia Asia 202

    Change Detection in Multi-temporal VHR Images Based on Deep Siamese Multi-scale Convolutional Networks

    Full text link
    Very-high-resolution (VHR) images can provide abundant ground details and spatial geometric information. Change detection in multi-temporal VHR images plays a significant role in urban expansion and area internal change analysis. Nevertheless, traditional change detection methods can neither take full advantage of spatial context information nor cope with the complex internal heterogeneity of VHR images. In this paper, a powerful feature extraction model entitled multi-scale feature convolution unit (MFCU) is adopted for change detection in multi-temporal VHR images. MFCU can extract multi-scale spatial-spectral features in the same layer. Based on the unit two novel deep siamese convolutional neural networks, called as deep siamese multi-scale convolutional network (DSMS-CN) and deep siamese multi-scale fully convolutional network (DSMS-FCN), are designed for unsupervised and supervised change detection, respectively. For unsupervised change detection, an automatic pre-classification is implemented to obtain reliable training samples, then DSMS-CN fits the statistical distribution of changed and unchanged areas from selected training samples through MFCU modules and deep siamese architecture. For supervised change detection, the end-to-end deep fully convolutional network DSMS-FCN is trained in any size of multi-temporal VHR images, and directly outputs the binary change map. In addition, for the purpose of solving the inaccurate localization problem, the fully connected conditional random field (FC-CRF) is combined with DSMS-FCN to refine the results. The experimental results with challenging data sets confirm that the two proposed architectures perform better than the state-of-the-art methods

    Efficiently utilizing complex-valued PolSAR image data via a multi-task deep learning framework

    Full text link
    Convolutional neural networks (CNNs) have been widely used to improve the accuracy of polarimetric synthetic aperture radar (PolSAR) image classification. However, in most studies, the difference between PolSAR images and optical images is rarely considered. Most of the existing CNNs are not tailored for the task of PolSAR image classification, in which complex-valued PolSAR data have been simply equated to real-valued data to fit the optical image processing architectures and avoid complex-valued operations. This is one of the reasons CNNs unable to perform their full capabilities in PolSAR classification. To solve the above problem, the objective of this paper is to develop a tailored CNN framework for PolSAR image classification, which can be implemented from two aspects: Seeking a better form of PolSAR data as the input of CNNs and building matched CNN architectures based on the proposed input form. In this paper, considering the properties of complex-valued numbers, amplitude and phase of complex-valued PolSAR data are extracted as the input for the first time to maintain the integrity of original information while avoiding immature complex-valued operations. Then, a multi-task CNN (MCNN) architecture is proposed to match the improved input form and achieve better classification results. Furthermore, depthwise separable convolution is introduced to the proposed architecture in order to better extract information from the phase information. Experiments on three PolSAR benchmark datasets not only prove that using amplitude and phase as the input do contribute to the improvement of PolSAR classification, but also verify the adaptability between the improved input form and the well-designed architectures

    Naive Gabor Networks for Hyperspectral Image Classification

    Full text link
    Recently, many convolutional neural network (CNN) methods have been designed for hyperspectral image (HSI) classification since CNNs are able to produce good representations of data, which greatly benefits from a huge number of parameters. However, solving such a high-dimensional optimization problem often requires a large amount of training samples in order to avoid overfitting. Additionally, it is a typical non-convex problem affected by many local minima and flat regions. To address these problems, in this paper, we introduce naive Gabor Networks or Gabor-Nets which, for the first time in the literature, design and learn CNN kernels strictly in the form of Gabor filters, aiming to reduce the number of involved parameters and constrain the solution space, and hence improve the performances of CNNs. Specifically, we develop an innovative phase-induced Gabor kernel, which is trickily designed to perform the Gabor feature learning via a linear combination of local low-frequency and high-frequency components of data controlled by the kernel phase. With the phase-induced Gabor kernel, the proposed Gabor-Nets gains the ability to automatically adapt to the local harmonic characteristics of the HSI data and thus yields more representative harmonic features. Also, this kernel can fulfill the traditional complex-valued Gabor filtering in a real-valued manner, hence making Gabor-Nets easily perform in a usual CNN thread. We evaluated our newly developed Gabor-Nets on three well-known HSIs, suggesting that our proposed Gabor-Nets can significantly improve the performance of CNNs, particularly with a small training set.Comment: This paper has been accepted by IEEE TNNL
    corecore