6 research outputs found

    Local resilience for squares of almost spanning cycles in sparse random graphs

    Full text link
    In 1962, P\'osa conjectured that a graph G=(V,E)G=(V, E) contains a square of a Hamiltonian cycle if δ(G)2n/3\delta(G)\ge 2n/3. Only more than thirty years later Koml\'os, S\'ark\H{o}zy, and Szemer\'edi proved this conjecture using the so-called Blow-Up Lemma. Here we extend their result to a random graph setting. We show that for every ϵ>0\epsilon > 0 and p=n1/2+ϵp=n^{-1/2+\epsilon} a.a.s. every subgraph of Gn,pG_{n,p} with minimum degree at least (2/3+ϵ)np(2/3+\epsilon)np contains the square of a cycle on (1o(1))n(1-o(1))n vertices. This is almost best possible in three ways: (1) for pn1/2p\ll n^{-1/2} the random graph will not contain any square of a long cycle (2) one cannot hope for a resilience version for the square of a spanning cycle (as deleting all edges in the neighborhood of single vertex destroys this property) and (3) for c<2/3c<2/3 a.a.s. Gn,pG_{n,p} contains a subgraph with minimum degree at least cnpcnp which does not contain the square of a path on (1/3+c)n(1/3+c)n vertices

    Local resilience of an almost spanning kk-cycle in random graphs

    Full text link
    The famous P\'{o}sa-Seymour conjecture, confirmed in 1998 by Koml\'{o}s, S\'{a}rk\"{o}zy, and Szemer\'{e}di, states that for any k2k \geq 2, every graph on nn vertices with minimum degree kn/(k+1)kn/(k + 1) contains the kk-th power of a Hamilton cycle. We extend this result to a sparse random setting. We show that for every k2k \geq 2 there exists C>0C > 0 such that if pC(logn/n)1/kp \geq C(\log n/n)^{1/k} then w.h.p. every subgraph of a random graph Gn,pG_{n, p} with minimum degree at least (k/(k+1)+o(1))np(k/(k + 1) + o(1))np, contains the kk-th power of a cycle on at least (1o(1))n(1 - o(1))n vertices, improving upon the recent results of Noever and Steger for k=2k = 2, as well as Allen et al. for k3k \geq 3. Our result is almost best possible in three ways: for pn1/kp \ll n^{-1/k} the random graph Gn,pG_{n, p} w.h.p. does not contain the kk-th power of any long cycle; there exist subgraphs of Gn,pG_{n, p} with minimum degree (k/(k+1)+o(1))np(k/(k + 1) + o(1))np and Ω(p2)\Omega(p^{-2}) vertices not belonging to triangles; there exist subgraphs of Gn,pG_{n, p} with minimum degree (k/(k+1)o(1))np(k/(k + 1) - o(1))np which do not contain the kk-th power of a cycle on (1o(1))n(1 - o(1))n vertices.Comment: 24 pages; small updates to the paper after anonymous reviewers' report

    Walker-Breaker Games on Gn,pG_{n,p}

    Full text link
    The Maker-Breaker connectivity game and Hamilton cycle game belong to the best studied games in positional games theory, including results on biased games, games on random graphs and fast winning strategies. Recently, the Connector-Breaker game variant, in which Connector has to claim edges such that her graph stays connected throughout the game, as well as the Walker-Breaker game variant, in which Walker has to claim her edges according to a walk, have received growing attention. For instance, London and Pluh\'ar studied the threshold bias for the Connector-Breaker connectivity game on a complete graph KnK_n, and showed that there is a big difference between the cases when Maker's bias equals 11 or 22. Moreover, a recent result by the first and third author as well as Kirsch shows that the threshold probability pp for the (2:2)(2:2) Connector-Breaker connectivity game on a random graph GGn,pG\sim G_{n,p} is of order n2/3+o(1)n^{-2/3+o(1)}. We extent this result further to Walker-Breaker games and prove that this probability is also enough for Walker to create a Hamilton cycle

    Counting extensions revisited

    Full text link
    We consider rooted subgraphs in random graphs, i.e., extension counts such as (i) the number of triangles containing a given vertex or (ii) the number of paths of length three connecting two given vertices. In 1989, Spencer gave sufficient conditions for the event that, with high probability, these extension counts are asymptotically equal for all choices of the root vertices. For the important strictly balanced case, Spencer also raised the fundamental question whether these conditions are necessary. We answer this question by a careful second moment argument, and discuss some intriguing problems that remain open.Comment: 21 pages, 2 figure

    Dirac-type theorems in random hypergraphs

    Full text link
    For positive integers d<kd<k and nn divisible by kk, let md(k,n)m_{d}(k,n) be the minimum dd-degree ensuring the existence of a perfect matching in a kk-uniform hypergraph. In the graph case (where k=2k=2), a classical theorem of Dirac says that m1(2,n)=n/2m_{1}(2,n)=\lceil n/2\rceil. However, in general, our understanding of the values of md(k,n)m_{d}(k,n) is still very limited, and it is an active topic of research to determine or approximate these values. In this paper we prove a "transference" theorem for Dirac-type results relative to random hypergraphs. Specifically, for any d0d0 and any "not too small" pp, we prove that a random kk-uniform hypergraph GG with nn vertices and edge probability pp typically has the property that every spanning subgraph of GG with minimum degree at least (1+ε)md(k,n)p(1+\varepsilon)m_{d}(k,n)p has a perfect matching. One interesting aspect of our proof is a "non-constructive" application of the absorbing method, which allows us to prove a bound in terms of md(k,n)m_{d}(k,n) without actually knowing its value
    corecore