4 research outputs found

    Mechanizing Refinement Types (extended)

    Full text link
    Practical checkers based on refinement types use the combination of implicit semantic sub-typing and parametric polymorphism to simplify the specification and automate the verification of sophisticated properties of programs. However, a formal meta-theoretic accounting of the soundness of refinement type systems using this combination has proved elusive. We present \lambda_RF a core refinement calculus that combines semantic sub-typing and parametric polymorphism. We develop a meta-theory for this calculus and prove soundness of the type system. Finally, we give a full mechanization of our meta-theory using the refinement-type based LiquidHaskell as a proof checker, showing how refinements can be used for mechanization.Comment: 32 pages, under revie

    Extending Liquid Types to Arrays

    Get PDF
    A liquid type is an ordinary Hindley-Milner type annotated with a logical predicate that states the properties satisfied by the elements of that type. Liquid types are a powerful tool for program verification, since programmers can use them to specify pre- and postconditions of their programs, while the predicates of intermediate variables and auxiliary functions are inferred automatically. Type inference is feasible in this context, since the logical predicates within liquid types are constrained to a quantifier-free logic in order to maintain decidability. In this paper we extend liquid types by allowing them to contain quantified properties on arrays, so that they can be used to infer invariants on array-related programs (for example, implementations of sorting algorithms). Although quantified logic is, in general, undecidable, we restrict properties on arrays to a decidable subset introduced by Bradley et al. We describe in detail the extended type system, the verification condition generator, and the iterative weakening algorithm for inferring invariants. After proving the correctness and completeness of these two algorithms, we apply them to find invariants on a set of algorithms involving array manipulations

    Local refinement typing

    No full text
    corecore