3,497 research outputs found

    Mitigating the effects of atmospheric distortion using DT-CWT fusion

    Get PDF
    This paper describes a new method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which degrades a region of interest (ROI). In order to provide accurate detail from objects behind the dis-torting layer, a simple and efficient frame selection method is proposed to pick informative ROIs from only good-quality frames. We solve the space-variant distortion problem using region-based fusion based on the Dual Tree Complex Wavelet Transform (DT-CWT). We also propose an object alignment method for pre-processing the ROI since this can exhibit sig-nificant offsets and distortions between frames. Simple haze removal is used as the final step. The proposed method per-forms very well with atmospherically distorted videos and outperforms other existing methods. Index Terms — Image restoration, fusion, DT-CWT 1

    Visual Impact Assessment - There's more to it than meets the eye!

    Get PDF
    The visual impact of a wind farm is one of the major causes of concern for all current U.K. wind farm projects. Often visual impact is the single most important issue on which a planning application is judged. A fair and honest assessment of the visual impact of a wind farm demands the co-operation of the developer, the planning authority, the public, and other interested parties. Visual impact assessment also demands that each individual involved in the planning process make their own judgement, because it is inadequate for this issue to be decided by a single individual

    Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China

    Get PDF
    In a study conducted in late summer 2000, a wide range of volatile organic compounds (VOCs) were measured throughout five target cities in the Pearl River Delta (PRD) region of south China. Twenty-eight nonmethane hydrocarbons (NMHCs; 13 saturated, 9 unsaturated, and 6 aromatic) are discussed. The effect of rapid industrialization was studied for three categories of landuse in the PRD: Industrial, industrial-urban, and industrial-suburban. The highest VOC mixing ratios were observed in industrial areas. Despite its relatively short atmospheric lifetime (2-3 days), toluene, which is largely emitted from industrial solvent use and vehicular emissions, was the most abundant NMHC quantified. Ethane, ethene, ethyne, propane, n-butane, i-pentane, benzene, and m-xylene were the next most abundant VOCs. Direct emissions from industrial activities were found to greatly impact the air quality in nearby neighborhoods. These emissions lead to large concentration variations for many VOCs in the five PRD study cities. Good correlations between isoprene and several short-lived combustion products were found in industrial areas, suggesting that in addition to biogenic sources, anthropogenic emissions may contribute to urban isoprene levels. This study provides a snapshot of industrial, industrial-urban, and industrial-suburban NMHCs in the five most industrially developed cities of the PRD. Increased impact of industrial activities on PRD air quality due to the rapid spread of industry from urban to suburban and rural areas, and the decrease of farmland, is expected to continue until effective emission standards are implemented. Copyright 2006 by the American Geophysical Union

    Persistent sulfate formation from London Fog to Chinese haze

    Get PDF
    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world

    Fog dispersion

    Get PDF
    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems
    corecore