15,485 research outputs found

    Different Approaches on Stochastic Reachability as an Optimal Stopping Problem

    Get PDF
    Reachability analysis is the core of model checking of time systems. For stochastic hybrid systems, this safety verification method is very little supported mainly because of complexity and difficulty of the associated mathematical problems. In this paper, we develop two main directions of studying stochastic reachability as an optimal stopping problem. The first approach studies the hypotheses for the dynamic programming corresponding with the optimal stopping problem for stochastic hybrid systems. In the second approach, we investigate the reachability problem considering approximations of stochastic hybrid systems. The main difficulty arises when we have to prove the convergence of the value functions of the approximating processes to the value function of the initial process. An original proof is provided

    Fast MCMC sampling for Markov jump processes and extensions

    Full text link
    Markov jump processes (or continuous-time Markov chains) are a simple and important class of continuous-time dynamical systems. In this paper, we tackle the problem of simulating from the posterior distribution over paths in these models, given partial and noisy observations. Our approach is an auxiliary variable Gibbs sampler, and is based on the idea of uniformization. This sets up a Markov chain over paths by alternately sampling a finite set of virtual jump times given the current path and then sampling a new path given the set of extant and virtual jump times using a standard hidden Markov model forward filtering-backward sampling algorithm. Our method is exact and does not involve approximations like time-discretization. We demonstrate how our sampler extends naturally to MJP-based models like Markov-modulated Poisson processes and continuous-time Bayesian networks and show significant computational benefits over state-of-the-art MCMC samplers for these models.Comment: Accepted at the Journal of Machine Learning Research (JMLR

    Some simple but challenging Markov processes

    Get PDF
    In this note, we present few examples of Piecewise Deterministic Markov Processes and their long time behavior. They share two important features: they are related to concrete models (in biology, networks, chemistry,. . .) and they are mathematically rich. Their math-ematical study relies on coupling method, spectral decomposition, PDE technics, functional inequalities. We also relate these simple examples to recent and open problems

    Queuing with future information

    Full text link
    We study an admissions control problem, where a queue with service rate 1−p1-p receives incoming jobs at rate λ∈(1−p,1)\lambda\in(1-p,1), and the decision maker is allowed to redirect away jobs up to a rate of pp, with the objective of minimizing the time-average queue length. We show that the amount of information about the future has a significant impact on system performance, in the heavy-traffic regime. When the future is unknown, the optimal average queue length diverges at rate ∌log⁥1/(1−p)11−λ\sim\log_{1/(1-p)}\frac{1}{1-\lambda}, as λ→1\lambda\to 1. In sharp contrast, when all future arrival and service times are revealed beforehand, the optimal average queue length converges to a finite constant, (1−p)/p(1-p)/p, as λ→1\lambda\to1. We further show that the finite limit of (1−p)/p(1-p)/p can be achieved using only a finite lookahead window starting from the current time frame, whose length scales as O(log⁥11−λ)\mathcal{O}(\log\frac{1}{1-\lambda}), as λ→1\lambda\to1. This leads to the conjecture of an interesting duality between queuing delay and the amount of information about the future.Comment: Published in at http://dx.doi.org/10.1214/13-AAP973 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Hitchhiker's Guide to Nonlinear Filtering

    Get PDF
    Nonlinear filtering is the problem of online estimation of a dynamic hidden variable from incoming data and has vast applications in different fields, ranging from engineering, machine learning, economic science and natural sciences. We start our review of the theory on nonlinear filtering from the simplest `filtering' task we can think of, namely static Bayesian inference. From there we continue our journey through discrete-time models, which is usually encountered in machine learning, and generalize to and further emphasize continuous-time filtering theory. The idea of changing the probability measure connects and elucidates several aspects of the theory, such as the parallels between the discrete- and continuous-time problems and between different observation models. Furthermore, it gives insight into the construction of particle filtering algorithms. This tutorial is targeted at scientists and engineers and should serve as an introduction to the main ideas of nonlinear filtering, and as a segway to more advanced and specialized literature.Comment: 64 page
    • 

    corecore