2,305 research outputs found

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Communities and beyond: mesoscopic analysis of a large social network with complementary methods

    Full text link
    Community detection methods have so far been tested mostly on small empirical networks and on synthetic benchmarks. Much less is known about their performance on large real-world networks, which nonetheless are a significant target for application. We analyze the performance of three state-of-the-art community detection methods by using them to identify communities in a large social network constructed from mobile phone call records. We find that all methods detect communities that are meaningful in some respects but fall short in others, and that there often is a hierarchical relationship between communities detected by different methods. Our results suggest that community detection methods could be useful in studying the general mesoscale structure of networks, as opposed to only trying to identify dense structures.Comment: 11 pages, 10 figures. V2: typos corrected, one sentence added. V3: revised version, Appendix added. V4: final published versio

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n
    • …
    corecore