5 research outputs found

    Local leader election, signal strength aware flooding, and routeless routing

    No full text
    We have identified a fundamental operator in wireless networks that we named the local leader election problem in which the goal is to select a leader node in a spatially close neighborhood. We present a simple and elegant solution to the local leader election problem by making use of both: (i) implicit synchronization points, commonly observable by all nodes in the same neighborhood, and (ii) the prioritized backoff delay, dependent on the desired probability of each node becoming a leader. We then show that both flooding and routing are instances of the local leader election problem, so our general solution naturally applies. By relating the backoff delay to the signal strength of the received packet, we can design a variant of flooding named Signal Strength Aware Flooding (SSAF) that can improve its efficiency. By using a different metric to derive the backoff delay, we have designed a new generation wireless routing protocol, that we named the Routeless Routing protocol that possesses several interesting properties. 1

    Local Leader Election, Signal Strength Aware Flooding, and Routeless Routing

    No full text

    Efficient Authentication, Node Clone Detection, and Secure Data Aggregation for Sensor Networks

    Get PDF
    Sensor networks are innovative wireless networks consisting of a large number of low-cost, resource-constrained sensor nodes that collect, process, and transmit data in a distributed and collaborative way. There are numerous applications for wireless sensor networks, and security is vital for many of them. However, sensor nodes suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose formidable security challenges and call for innovative approaches. In this thesis, we present our research results on three important aspects of securing sensor networks: lightweight entity authentication, distributed node clone detection, and secure data aggregation. As the technical core of our lightweight authentication proposals, a special type of circulant matrix named circulant-P2 matrix is introduced. We prove the linear independence of matrix vectors, present efficient algorithms on matrix operations, and explore other important properties. By combining circulant-P2 matrix with the learning parity with noise problem, we develop two one-way authentication protocols: the innovative LCMQ protocol, which is provably secure against all probabilistic polynomial-time attacks and provides remarkable performance on almost all metrics except one mild requirement for the verifier's computational capacity, and the HBC^C protocol, which utilizes the conventional HB-like authentication structure to preserve the bit-operation only computation requirement for both participants and consumes less key storage than previous HB-like protocols without sacrificing other performance. Moreover, two enhancement mechanisms are provided to protect the HB-like protocols from known attacks and to improve performance. For both protocols, practical parameters for different security levels are recommended. In addition, we build a framework to extend enhanced HB-like protocols to mutual authentication in a communication-efficient fashion. Node clone attack, that is, the attempt by adversaries to add one or more nodes to the network by cloning captured nodes, imposes a severe threat to wireless sensor networks. To cope with it, we propose two distributed detection protocols with difference tradeoffs on network conditions and performance. The first one is based on distributed hash table, by which a fully decentralized, key-based caching and checking system is constructed to deterministically catch cloned nodes in general sensor networks. The protocol performance of efficient storage consumption and high security level is theoretically deducted through a probability model, and the resulting equations, with necessary adjustments for real application, are supported by the simulations. The other is the randomly directed exploration protocol, which presents notable communication performance and minimal storage consumption by an elegant probabilistic directed forwarding technique along with random initial direction and border determination. The extensive experimental results uphold the protocol design and show its efficiency on communication overhead and satisfactory detection probability. Data aggregation is an inherent requirement for many sensor network applications, but designing secure mechanisms for data aggregation is very challenging because the aggregation nature that requires intermediate nodes to process and change messages, and the security objective to prevent malicious manipulation, conflict with each other to a great extent. To fulfill different challenges of secure data aggregation, we present two types of approaches. The first is to provide cryptographic integrity mechanisms for general data aggregation. Based on recent developments of homomorphic primitives, we propose three integrity schemes: a concrete homomorphic MAC construction, homomorphic hash plus aggregate MAC, and homomorphic hash with identity-based aggregate signature, which provide different tradeoffs on security assumption, communication payload, and computation cost. The other is a substantial data aggregation scheme that is suitable for a specific and popular class of aggregation applications, embedded with built-in security techniques that effectively defeat outside and inside attacks. Its foundation is a new data structure---secure Bloom filter, which combines HMAC with Bloom filter. The secure Bloom filter is naturally compatible with aggregation and has reliable security properties. We systematically analyze the scheme's performance and run extensive simulations on different network scenarios for evaluation. The simulation results demonstrate that the scheme presents good performance on security, communication cost, and balance
    corecore