34,806 research outputs found

    Understanding and Comparing Deep Neural Networks for Age and Gender Classification

    Full text link
    Recently, deep neural networks have demonstrated excellent performances in recognizing the age and gender on human face images. However, these models were applied in a black-box manner with no information provided about which facial features are actually used for prediction and how these features depend on image preprocessing, model initialization and architecture choice. We present a study investigating these different effects. In detail, our work compares four popular neural network architectures, studies the effect of pretraining, evaluates the robustness of the considered alignment preprocessings via cross-method test set swapping and intuitively visualizes the model's prediction strategies in given preprocessing conditions using the recent Layer-wise Relevance Propagation (LRP) algorithm. Our evaluations on the challenging Adience benchmark show that suitable parameter initialization leads to a holistic perception of the input, compensating artefactual data representations. With a combination of simple preprocessing steps, we reach state of the art performance in gender recognition.Comment: 8 pages, 5 figures, 5 tables. Presented at ICCV 2017 Workshop: 7th IEEE International Workshop on Analysis and Modeling of Faces and Gesture

    Convolutional RNN: an Enhanced Model for Extracting Features from Sequential Data

    Get PDF
    Traditional convolutional layers extract features from patches of data by applying a non-linearity on an affine function of the input. We propose a model that enhances this feature extraction process for the case of sequential data, by feeding patches of the data into a recurrent neural network and using the outputs or hidden states of the recurrent units to compute the extracted features. By doing so, we exploit the fact that a window containing a few frames of the sequential data is a sequence itself and this additional structure might encapsulate valuable information. In addition, we allow for more steps of computation in the feature extraction process, which is potentially beneficial as an affine function followed by a non-linearity can result in too simple features. Using our convolutional recurrent layers we obtain an improvement in performance in two audio classification tasks, compared to traditional convolutional layers. Tensorflow code for the convolutional recurrent layers is publicly available in https://github.com/cruvadom/Convolutional-RNN
    corecore