3 research outputs found

    Dual-frequency single-inductor multiple-output (DF-SIMO) power converter topology for SoC applications

    Get PDF
    Modern mixed-signal SoCs integrate a large number of sub-systems in a single nanometer CMOS chip. Each sub-system typically requires its own independent and well-isolated power supply. However, to build these power supplies requires many large off-chip passive components, and thus the bill of material, the package pin count, and the printed circuit board area and complexity increase dramatically, leading to higher overall cost. Conventional (single-frequency) Single-Inductor Multiple-Output (SIMO) power converter topology can be employed to reduce the burden of off-chip inductors while producing a large number of outputs. However, this strategy requires even larger off-chip output capacitors than single-output converters due to time multiplexing between the multiple outputs, and thus many of them suffer from cross coupling issues that limit the isolation between the outputs. In this thesis, a Dual-Frequency SIMO (DF-SIMO) buck converter topology is proposed. Unlike conventional SIMO topologies, the DF-SIMO decouples the rate of power conversion at the input stage from the rate of power distribution at the output stage. Switching the input stage at low frequency (~2 MHz) simplifies its design in nanometer CMOS, especially with input voltages higher than 1.2 V, while switching the output stage at higher frequency enables faster output dynamic response, better cross-regulation, and smaller output capacitors without the efficiency and design complexity penalty of switching both the input and output stages at high frequency. Moreover, for output switching frequency higher than 100 MHz, the output capacitors can be small enough to be integrated on-chip. A 5-output 2-MHz/120-MHz design in 45-nm CMOS with 1.8-V input targeting low-power microcontrollers is presented as an application. The outputs vary from 0.6 to 1.6 V, with 4 outputs providing up to 15 mA and one output providing up to 50 mA. The design uses single 10-uH off-chip inductor, 2-nF on-chip capacitor for each 15-mA output and 4.5-nF for the 50-mA output. The peak efficiency is 73%, Dynamic Voltage Scaling (DVS) is 0.6 V/80 ns, and settling time is 30 ns for half-to-full load steps with no observable overshoot/undershoot or cross-coupling transients. The DF-SIMO topology enables realizing multiple efficient power supplies with faster dynamic response, better cross-regulation, and lower overall cost compared to conventional SIMO topologies

    Dual-frequency dual-inductor multiple-outputs (DF-DIMO) buck converter topologies with fully-integrated output filters

    Get PDF
    In multi-core DSPs, there is a need for multiple independent power supplies to power the digital cores. Each power supply needs to have fast dynamic response and must support a wide range of output voltage with up to hundreds of mA load current. In this dissertation, the key performance metrics in power converter design are introduced, the advantages and dis-advantages of the conventional power converter topology are analyzed and a new Dual-Frequency Dual-Inductor Multiple-Output (DF-DIMO) buck converter topology is presented to improve the limitations of the conventional topologies. The proposed topology employs a dual-phase 20-MHz current-mode-controlled input stage to reduce the inductance required per phase to only 200 nH, and a 4-output 100-MHz comparator-controlled fully-integrated output stage to reduce the capacitance required per output to 10 nF. To enable each output to handle up to 250-mA load with less than 40-mV voltage ripple, a 3rd-order bond-wire-based notch filter is employed at each output for voltage ripple suppression. Additionally, the proposed design employs dynamic output re-ordering to enhance dynamic and cross-regulation performance, interleaved pulse-skipping to enhance light-load efficiency, and high-gain local output feedback to enhance DC load Regulation. Targeting multi-core DSPs, the proposed design is implemented in standard 65-nm CMOS technology with 1.8-V input, and outputs in the range of 0.6–1.2 V with a total load of 1 A. It achieves a peak efficiency of 74%, less than 40-mV output voltage ripple, 0.5-V/70-ns Dynamic Voltage Scaling (DVS), and settling time of less than 85 ns for 125-mA all with no cross regulations

    Mixed-source charger-supply CMOS IC

    Get PDF
    The proposed research objective is to develop, test, and evaluate a mixer and charger-supply CMOS IC that derives and mixes energy and power from mixed sources to accurately supply a miniaturized system. Since the energy-dense source stores more energy than the power-dense source while the latter supplies more power than the former, the proposed research aims to develop an IC that automatically selects how much and from which source to draw power to maximize lifetime per unit volume. Today, the state of the art lacks the intelligence and capability to select the most appropriate source from which to extract power to supply the time-varying needs of a small system. As such, the underlying objective and benefit of this research is to reduce the size of a complete electronic system so that wireless sensors and biomedical implants, for example, as a whole, perform well, operate for extended periods, and integrate into tiny spaces.Ph.D
    corecore