21,317 research outputs found

    Classification methods for Hilbert data based on surrogate density

    Get PDF
    An unsupervised and a supervised classification approaches for Hilbert random curves are studied. Both rest on the use of a surrogate of the probability density which is defined, in a distribution-free mixture context, from an asymptotic factorization of the small-ball probability. That surrogate density is estimated by a kernel approach from the principal components of the data. The focus is on the illustration of the classification algorithms and the computational implications, with particular attention to the tuning of the parameters involved. Some asymptotic results are sketched. Applications on simulated and real datasets show how the proposed methods work.Comment: 33 pages, 11 figures, 6 table

    Structural Equation Modeling and simultaneous clustering through the Partial Least Squares algorithm

    Full text link
    The identification of different homogeneous groups of observations and their appropriate analysis in PLS-SEM has become a critical issue in many appli- cation fields. Usually, both SEM and PLS-SEM assume the homogeneity of all units on which the model is estimated, and approaches of segmentation present in literature, consist in estimating separate models for each segments of statistical units, which have been obtained either by assigning the units to segments a priori defined. However, these approaches are not fully accept- able because no causal structure among the variables is postulated. In other words, a modeling approach should be used, where the obtained clusters are homogeneous with respect to the structural causal relationships. In this paper, a new methodology for simultaneous non-hierarchical clus- tering and PLS-SEM is proposed. This methodology is motivated by the fact that the sequential approach of applying first SEM or PLS-SEM and second the clustering algorithm such as K-means on the latent scores of the SEM/PLS-SEM may fail to find the correct clustering structure existing in the data. A simulation study and an application on real data are included to evaluate the performance of the proposed methodology

    Efficient Decentralized Visual Place Recognition From Full-Image Descriptors

    Full text link
    In this paper, we discuss the adaptation of our decentralized place recognition method described in [1] to full image descriptors. As we had shown, the key to making a scalable decentralized visual place recognition lies in exploting deterministic key assignment in a distributed key-value map. Through this, it is possible to reduce bandwidth by up to a factor of n, the robot count, by casting visual place recognition to a key-value lookup problem. In [1], we exploited this for the bag-of-words method [3], [4]. Our method of casting bag-of-words, however, results in a complex decentralized system, which has inherently worse recall than its centralized counterpart. In this paper, we instead start from the recent full-image description method NetVLAD [5]. As we show, casting this to a key-value lookup problem can be achieved with k-means clustering, and results in a much simpler system than [1]. The resulting system still has some flaws, albeit of a completely different nature: it suffers when the environment seen during deployment lies in a different distribution in feature space than the environment seen during training.Comment: 3 pages, 4 figures. This is a self-published paper that accompanies our original work [1] as well as the ICRA 2017 Workshop on Multi-robot Perception-Driven Control and Planning [2

    Kernel Spectral Clustering and applications

    Full text link
    In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane in a high dimensional space induced by a kernel. In addition, the multi-way clustering can be obtained by combining a set of binary decision functions via an Error Correcting Output Codes (ECOC) encoding scheme. Because of its model-based nature, the KSC method encompasses three main steps: training, validation, testing. In the validation stage model selection is performed to obtain tuning parameters, like the number of clusters present in the data. This is a major advantage compared to classical spectral clustering where the determination of the clustering parameters is unclear and relies on heuristics. Once a KSC model is trained on a small subset of the entire data, it is able to generalize well to unseen test points. Beyond the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky Decomposition (ICD) and L0L_0, L1,L0+L1L_1, L_0 + L_1, Group Lasso regularization are reviewed. In that respect, we show how it is possible to handle large scale data. Also, two possible ways to perform hierarchical clustering and a soft clustering method are presented. Finally, real-world applications such as image segmentation, power load time-series clustering, document clustering and big data learning are considered.Comment: chapter contribution to the book "Unsupervised Learning Algorithms
    • …
    corecore