83,967 research outputs found

    Joint Frequency Regulation and Economic Dispatch Using Limited Communication

    Full text link
    We study the performance of a decentralized integral control scheme for joint power grid frequency regulation and economic dispatch. We show that by properly designing the controller gains, after a power flow perturbation, the control achieves near-optimal economic dispatch while recovering the nominal frequency, without requiring any communication. We quantify the gap between the controllable power generation cost under the decentralized control scheme and the optimal cost, based on the DC power flow model. Moreover, we study the tradeoff between the cost and the convergence time, by adjusting parameters of the control scheme. Communication between generators reduces the convergence time. We identify key communication links whose failures have more significant impacts on the performance of a distributed power grid control scheme that requires information exchange between neighbors

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    rDLB: A Novel Approach for Robust Dynamic Load Balancing of Scientific Applications with Parallel Independent Tasks

    Full text link
    Scientific applications often contain large and computationally intensive parallel loops. Dynamic loop self scheduling (DLS) is used to achieve a balanced load execution of such applications on high performance computing (HPC) systems. Large HPC systems are vulnerable to processors or node failures and perturbations in the availability of resources. Most self-scheduling approaches do not consider fault-tolerant scheduling or depend on failure or perturbation detection and react by rescheduling failed tasks. In this work, a robust dynamic load balancing (rDLB) approach is proposed for the robust self scheduling of independent tasks. The proposed approach is proactive and does not depend on failure or perturbation detection. The theoretical analysis of the proposed approach shows that it is linearly scalable and its cost decrease quadratically by increasing the system size. rDLB is integrated into an MPI DLS library to evaluate its performance experimentally with two computationally intensive scientific applications. Results show that rDLB enables the tolerance of up to (P minus one) processor failures, where P is the number of processors executing an application. In the presence of perturbations, rDLB boosted the robustness of DLS techniques up to 30 times and decreased application execution time up to 7 times compared to their counterparts without rDLB
    • …
    corecore