23,712 research outputs found

    Adaptive Event Dispatching in Serverless Computing Infrastructures

    Full text link
    Serverless computing is an emerging Cloud service model. It is currently gaining momentum as the next step in the evolution of hosted computing from capacitated machine virtualisation and microservices towards utility computing. The term "serverless" has become a synonym for the entirely resource-transparent deployment model of cloud-based event-driven distributed applications. This work investigates how adaptive event dispatching can improve serverless platform resource efficiency and contributes a novel approach that allows for better scaling and fitting of the platform's resource consumption to actual demand

    The Serverless Scheduling Problem and NOAH

    Full text link
    The serverless scheduling problem poses a new challenge to Cloud service platform providers because it is rather a job scheduling problem than a traditional resource allocation or request load balancing problem. Traditionally, elastic cloud applications use managed virtual resource allocation and employ request load balancers to orchestrate the deployment. With serverless, the provider needs to solve both the load balancing and the allocation. This work reviews the current Apache OpenWhisk serverless event load balancing and a noncooperative game-theoretic load balancing approach for response time minimization in distributed systems. It is shown by simulation that neither performs well under high system utilization which inspired a noncooperative online allocation heuristic that allows tuning the trade-off between for response time and resource cost of each serverless function.Comment: in revision after submission to HotCloud'1

    Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

    Full text link
    This chapter presents: (i) a layered peer-to-peer Cloud provisioning architecture; (ii) a summary of the current state-of-the-art in Cloud provisioning with particular emphasis on service discovery and load-balancing; (iii) a classification of the existing peer-to-peer network management model with focus on extending the DHTs for indexing and managing complex provisioning information; and (iv) the design and implementation of novel, extensible software fabric (Cloud peer) that combines public/private clouds, overlay networking and structured peer-to-peer indexing techniques for supporting scalable and self-managing service discovery and load-balancing in Cloud computing environments. Finally, an experimental evaluation is presented that demonstrates the feasibility of building next generation Cloud provisioning systems based on peer-to-peer network management and information dissemination models. The experimental test-bed has been deployed on a public cloud computing platform, Amazon EC2, which demonstrates the effectiveness of the proposed peer-to-peer Cloud provisioning software fabric

    soCloud: A service-oriented component-based PaaS for managing portability, provisioning, elasticity, and high availability across multiple clouds

    Full text link
    Multi-cloud computing is a promising paradigm to support very large scale world wide distributed applications. Multi-cloud computing is the usage of multiple, independent cloud environments, which assumed no priori agreement between cloud providers or third party. However, multi-cloud computing has to face several key challenges such as portability, provisioning, elasticity, and high availability. Developers will not only have to deploy applications to a specific cloud, but will also have to consider application portability from one cloud to another, and to deploy distributed applications spanning multiple clouds. This article presents soCloud a service-oriented component-based Platform as a Service (PaaS) for managing portability, elasticity, provisioning, and high availability across multiple clouds. soCloud is based on the OASIS Service Component Architecture (SCA) standard in order to address portability. soCloud provides services for managing provisioning, elasticity, and high availability across multiple clouds. soCloud has been deployed and evaluated on top of ten existing cloud providers: Windows Azure, DELL KACE, Amazon EC2, CloudBees, OpenShift, dotCloud, Jelastic, Heroku, Appfog, and an Eucalyptus private cloud

    A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors

    Full text link
    An increasing number of technology enterprises are adopting cloud-native architectures to offer their web-based products, by moving away from privately-owned data-centers and relying exclusively on cloud service providers. As a result, cloud vendors have lately increased, along with the estimated annual revenue they share. However, in the process of selecting a provider's cloud service over the competition, we observe a lack of universal common ground in terms of terminology, functionality of services and billing models. This is an important gap especially under the new reality of the industry where each cloud provider has moved towards his own service taxonomy, while the number of specialized services has grown exponentially. This work discusses cloud services offered by four dominant, in terms of their current market share, cloud vendors. We provide a taxonomy of their services and sub-services that designates major service families namely computing, storage, databases, analytics, data pipelines, machine learning, and networking. The aim of such clustering is to indicate similarities, common design approaches and functional differences of the offered services. The outcomes are essential both for individual researchers, and bigger enterprises in their attempt to identify the set of cloud services that will utterly meet their needs without compromises. While we acknowledge the fact that this is a dynamic industry, where new services arise constantly, and old ones experience important updates, this study paints a solid image of the current offerings and gives prominence to the directions that cloud service providers are following

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

    Full text link
    The Internet of Things (IoT) paradigm is being rapidly adopted for the creation of smart environments in various domains. The IoT-enabled Cyber-Physical Systems (CPSs) associated with smart city, healthcare, Industry 4.0 and Agtech handle a huge volume of data and require data processing services from different types of applications in real-time. The Cloud-centric execution of IoT applications barely meets such requirements as the Cloud datacentres reside at a multi-hop distance from the IoT devices. \textit{Fog computing}, an extension of Cloud at the edge network, can execute these applications closer to data sources. Thus, Fog computing can improve application service delivery time and resist network congestion. However, the Fog nodes are highly distributed, heterogeneous and most of them are constrained in resources and spatial sharing. Therefore, efficient management of applications is necessary to fully exploit the capabilities of Fog nodes. In this work, we investigate the existing application management strategies in Fog computing and review them in terms of architecture, placement and maintenance. Additionally, we propose a comprehensive taxonomy and highlight the research gaps in Fog-based application management. We also discuss a perspective model and provide future research directions for further improvement of application management in Fog computing

    Open-Source Simulators for Cloud Computing: Comparative Study and Challenging Issues

    Full text link
    Resource scheduling in infrastructure as a service (IaaS) is one of the keys for large-scale Cloud applications. Extensive research on all issues in real environment is extremely difficult because it requires developers to consider network infrastructure and the environment, which may be beyond the control. In addition, the network conditions cannot be controlled or predicted. Performance evaluations of workload models and Cloud provisioning algorithms in a repeatable manner under different configurations are difficult. Therefore, simulators are developed. To understand and apply better the state-of-the-art of cloud computing simulators, and to improve them, we study four known open-source simulators. They are compared in terms of architecture, modeling elements, simulation process, performance metrics and scalability in performance. Finally, a few challenging issues as future research trends are outlined.Comment: 15 pages, 11 figures, accepted for publication in Journal: Simulation Modelling Practice and Theor

    Software-Defined Networking: State of the Art and Research Challenges

    Full text link
    Plug-and-play information technology (IT) infrastructure has been expanding very rapidly in recent years. With the advent of cloud computing, many ecosystem and business paradigms are encountering potential changes and may be able to eliminate their IT infrastructure maintenance processes. Real-time performance and high availability requirements have induced telecom networks to adopt the new concepts of the cloud model: software-defined networking (SDN) and network function virtualization (NFV). NFV introduces and deploys new network functions in an open and standardized IT environment, while SDN aims to transform the way networks function. SDN and NFV are complementary technologies; they do not depend on each other. However, both concepts can be merged and have the potential to mitigate the challenges of legacy networks. In this paper, our aim is to describe the benefits of using SDN in a multitude of environments such as in data centers, data center networks, and Network as Service offerings. We also present the various challenges facing SDN, from scalability to reliability and security concerns, and discuss existing solutions to these challenges

    A Survey on Large Scale Metadata Server for Big Data Storage

    Full text link
    Big Data is defined as high volume of variety of data with an exponential data growth rate. Data are amalgamated to generate revenue, which results a large data silo. Data are the oils of modern IT industries. Therefore, the data are growing at an exponential pace. The access mechanism of these data silos are defined by metadata. The metadata are decoupled from data server for various beneficial reasons. For instance, ease of maintenance. The metadata are stored in metadata server (MDS). Therefore, the study on the MDS is mandatory in designing of a large scale storage system. The MDS requires many parameters to augment with its architecture. The architecture of MDS depends on the demand of the storage system's requirements. Thus, MDS is categorized in various ways depending on the underlying architecture and design methodology. The article surveys on the various kinds of MDS architecture, designs, and methodologies. This article emphasizes on clustered MDS (cMDS) and the reports are prepared based on a) Bloom filter−-based MDS, b) Client−-funded MDS, c) Geo−-aware MDS, d) Cache−-aware MDS, e) Load−-aware MDS, f) Hash−-based MDS, and g) Tree−-based MDS. Additionally, the article presents the issues and challenges of MDS for mammoth sized data.Comment: Submitted to ACM for possible publicatio
    • …
    corecore