1,172 research outputs found

    Load Balancing Congestion Games and their Asymptotic Behavior

    Get PDF
    A central question in routing games has been to establish conditions for the uniqueness of the equilibrium, either in terms of network topology or in terms of costs. This question is well understood in two classes of routing games. The first is the non-atomic routing introduced by Wardrop on 1952 in the context of road traffic in which each player (car) is infinitesimally small; a single car has a negligible impact on the congestion. Each car wishes to minimize its expected delay. Under arbitrary topology, such games are known to have a convex potential and thus a unique equilibrium. The second framework is splitable atomic games: there are finitely many players, each controlling the route of a population of individuals (let them be cars in road traffic or packets in the communication networks). In this paper, we study two other frameworks of routing games in which each of several players has an integer number of connections (which are population of packets) to route and where there is a constraint that a connection cannot be split. Through a particular game with a simple three link topology, we identify various novel and surprising properties of games within these frameworks. We show in particular that equilibria are non unique even in the potential game setting of Rosenthal with strictly convex link costs. We further show that non-symmetric equilibria arise in symmetric networks. I. INTRODUCTION A central question in routing games has been to establish conditions for the uniqueness of the equilibria, either in terms of the network topology or in terms of the costs. A survey on these issues is given in [1]. The question of uniqueness of equilibria has been studied in two different frameworks. The first, which we call F1, is the non-atomic routing introduced by Wardrop on 1952 in the context of road traffic in which each player (car) is infinitesimally small; a single car has a negligible impact on the congestion. Each car wishes to minimize its expected delay. Under arbitrary topology, such games are known to have a convex potential and thus have a unique equilibrium [2]. The second framework, denoted by F2, is splitable atomic games. There are finitely many players, each controlling the route of a population of individuals. This type of games have already been studied in the context of road traffic by Haurie and Marcotte [3] but have become central in the telecom community to model routing decisions of Internet Service Providers that can decide how to split the traffic of their subscribers among various routes so as to minimize network congestion [4]. In this paper we study properties of equilibria in two other frameworks of routing games which exhibit surprisin

    Price of Anarchy in Bernoulli Congestion Games with Affine Costs

    Full text link
    We consider an atomic congestion game in which each player participates in the game with an exogenous and known probability pi∈[0,1]p_{i}\in[0,1], independently of everybody else, or stays out and incurs no cost. We first prove that the resulting game is potential. Then, we compute the parameterized price of anarchy to characterize the impact of demand uncertainty on the efficiency of selfish behavior. It turns out that the price of anarchy as a function of the maximum participation probability p=max⁥ipip=\max_{i} p_{i} is a nondecreasing function. The worst case is attained when players have the same participation probabilities pi≡pp_{i}\equiv p. For the case of affine costs, we provide an analytic expression for the parameterized price of anarchy as a function of pp. This function is continuous on (0,1](0,1], is equal to 4/34/3 for 0<p≀1/40<p\leq 1/4, and increases towards 5/25/2 when p→1p\to 1. Our work can be interpreted as providing a continuous transition between the price of anarchy of nonatomic and atomic games, which are the extremes of the price of anarchy function we characterize. We show that these bounds are tight and are attained on routing games -- as opposed to general congestion games -- with purely linear costs (i.e., with no constant terms).Comment: 29 pages, 6 figure

    Load Balancing via Random Local Search in Closed and Open systems

    Full text link
    In this paper, we analyze the performance of random load resampling and migration strategies in parallel server systems. Clients initially attach to an arbitrary server, but may switch server independently at random instants of time in an attempt to improve their service rate. This approach to load balancing contrasts with traditional approaches where clients make smart server selections upon arrival (e.g., Join-the-Shortest-Queue policy and variants thereof). Load resampling is particularly relevant in scenarios where clients cannot predict the load of a server before being actually attached to it. An important example is in wireless spectrum sharing where clients try to share a set of frequency bands in a distributed manner.Comment: Accepted to Sigmetrics 201

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201
    • 

    corecore