19,010 research outputs found
Scalability analysis of large-scale LoRaWAN networks in ns-3
As LoRaWAN networks are actively being deployed in the field, it is important
to comprehend the limitations of this Low Power Wide Area Network technology.
Previous work has raised questions in terms of the scalability and capacity of
LoRaWAN networks as the number of end devices grows to hundreds or thousands
per gateway. Some works have modeled LoRaWAN networks as pure ALOHA networks,
which fails to capture important characteristics such as the capture effect and
the effects of interference. Other works provide a more comprehensive model by
relying on empirical and stochastic techniques. This work uses a different
approach where a LoRa error model is constructed from extensive complex
baseband bit error rate simulations and used as an interference model. The
error model is combined with the LoRaWAN MAC protocol in an ns-3 module that
enables to study multi channel, multi spreading factor, multi gateway,
bi-directional LoRaWAN networks with thousands of end devices. Using the
lorawan ns-3 module, a scalability analysis of LoRaWAN shows the detrimental
impact of downstream traffic on the delivery ratio of confirmed upstream
traffic. The analysis shows that increasing gateway density can ameliorate but
not eliminate this effect, as stringent duty cycle requirements for gateways
continue to limit downstream opportunities.Comment: 12 pages, submitted to the IEEE Internet of Things Journa
Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios
Connectivity is probably the most basic building block of the Internet of
Things (IoT) paradigm. Up to know, the two main approaches to provide data
access to the \emph{things} have been based either on multi-hop mesh networks
using short-range communication technologies in the unlicensed spectrum, or on
long-range, legacy cellular technologies, mainly 2G/GSM, operating in the
corresponding licensed frequency bands. Recently, these reference models have
been challenged by a new type of wireless connectivity, characterized by
low-rate, long-range transmission technologies in the unlicensed sub-GHz
frequency bands, used to realize access networks with star topology which are
referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we
introduce this new approach to provide connectivity in the IoT scenario,
discussing its advantages over the established paradigms in terms of
efficiency, effectiveness, and architectural design, in particular for the
typical Smart Cities applications
KRATOS: An Open Source Hardware-Software Platform for Rapid Research in LPWANs
Long-range (LoRa) radio technologies have recently gained momentum in the IoT
landscape, allowing low-power communications over distances up to several
kilometers. As a result, more and more LoRa networks are being deployed.
However, commercially available LoRa devices are expensive and propriety,
creating a barrier to entry and possibly slowing down developments and
deployments of novel applications. Using open-source hardware and software
platforms would allow more developers to test and build intelligent devices
resulting in a better overall development ecosystem, lower barriers to entry,
and rapid growth in the number of IoT applications. Toward this goal, this
paper presents the design, implementation, and evaluation of KRATOS, a low-cost
LoRa platform running ContikiOS. Both, our hardware and software designs are
released as an open- source to the research community.Comment: Accepted at WiMob 201
Adaptive data synchronization algorithm for IoT-oriented low-power wide-area networks
The Internet of Things (IoT) is by now very close to be realized, leading the world towards a new technological era where people’s lives and habits will be definitively revolutionized. Furthermore, the incoming 5G technology promises significant enhancements concerning the Quality of Service (QoS) in mobile communications. Having billions of devices simultaneously connected has opened new challenges about network management and data exchange rules that need to be tailored to the characteristics of the considered scenario. A large part of the IoT market is pointing to Low-Power Wide-Area Networks (LPWANs) representing the infrastructure for several applications having energy saving as a mandatory goal besides other aspects of QoS. In this context, we propose a low-power IoT-oriented file synchronization protocol that, by dynamically optimizing the amount of data to be transferred, limits the device level of interaction within the network, therefore extending the battery life. This protocol can be adopted with different Layer 2 technologies and provides energy savings at the IoT device level that can be exploited by different applications
Grant-free Radio Access IoT Networks: Scalability Analysis in Coexistence Scenarios
IoT networks with grant-free radio access, like SigFox and LoRa, offer
low-cost durable communications over unlicensed band. These networks are
becoming more and more popular due to the ever-increasing need for ultra
durable, in terms of battery lifetime, IoT networks. Most studies evaluate the
system performance assuming single radio access technology deployment. In this
paper, we study the impact of coexisting competing radio access technologies on
the system performance. Considering \mathpzc K technologies, defined by time
and frequency activity factors, bandwidth, and power, which share a set of
radio resources, we derive closed-form expressions for the successful
transmission probability, expected battery lifetime, and experienced delay as a
function of distance to the serving access point. Our analytical model, which
is validated by simulation results, provides a tool to evaluate the coexistence
scenarios and analyze how introduction of a new coexisting technology may
degrade the system performance in terms of success probability and battery
lifetime. We further investigate solutions in which this destructive effect
could be compensated, e.g., by densifying the network to a certain extent and
utilizing joint reception
- …
