976 research outputs found

    LIVE STREAMING USING PEER DIVISION MULTIPLEXING

    Get PDF
    A Number of commercial peer-to-peer (P2P) systems for live streaming have been introduced in recent years. The behaviour of the popular systems has been extensively studied in several measurement papers. However, these studies have to rely on a “black-box” approach, where packet traces are collected from a single or a limited number of measurement points, to infer various properties of the traffic on the control and data planes. Although, such studies are useful to compared different systems from the end user’s perspective. It is difficult to intuitively understand the observed properties without fully reverseengineering the underlying systems. In this paper, we describe the network architecture of Zattoo, one of the largest production, live streaming providers, in Europe, at the time of writing, and present a large-scale measurement study of zattoo, using data collected by the provider. To highlight we found that even, when the zattoo system was heavily loaded with as high as 20000 concurrent users on a single overlay, the median channel join delay remained less than 2-5 s, and that, for a majority of users, the streamed signal lags over-the-air broadcast signal by more than 3 s

    Communications with guaranteed bandwidth and low latency using frequency-referenced multiplexing

    Get PDF
    Emerging cloud applications such as virtual reality and connected car fleets demand guaranteed connections, as well as low and stable latency, to edge data centres. Currently, user–cloud communications rely on time-scheduled data frames through tree-topology fibre networks, which are incapable of providing guaranteed connections with low or stable latency and cannot be scaled to a larger number of users. Here we show that a frequency-referenced multiplexing method can provide guaranteed bandwidth and low latency for time-critical applications. We use clock and optical frequency synchronization, enabled by frequency comb and signal processing techniques, to provide each user with dedicated optical bandwidth, creating scalable user–cloud upstream communications. As a proof of concept, we demonstrate a frequency-division multiplexing system servicing up to 64 users with an aggregate bandwidth of 160 GHz, exhibiting a data rate of up to 4.3 Gbps per user (240.0 Gbps aggregated capacity considering a 200 GHz wavelength band) with a high receiver sensitivity of –35 dBm

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    A short survey on next generation 5G wireless networks

    Get PDF
    Current 4G - the fourth-generation wireless communication, which exists in most countries, represents an advance of the previous 3 generation wireless communication. However, there are some challenges and limitations, associated with an explosion of wireless devices, which cannot be accommodated by 4G. Increasing the proliferation of smart devices, the development of new multimedia applications, and the growing demand for high data rates are among the main problems of the existing 4G system. As a solution, the wireless system designers have started research on the fifth-generation wireless systems. 5G will be the paradigm shift that could provide with ultra-high data rate, low latency, an increase of the base station capacity, and the improved quality of services. This paper is a review of the changes through the evolution of existing cellular networks toward 5G.  It represented a comprehensive study associated with 5G, requirements for 5G, its advantages, and challenges. We will explain the architecture changes – radio access network (RAN), air interfaces, smart antennas, cloud RAN, and HetNet. Furthermore, it discussed physical layer technologies, which include new channel modes estimation, new antenna design, and MIMO technologies. Also, it discussed MAC layer protocols. The article included three kinds of technologies: heterogeneous networks, massive multiple-input and output, and millimeter-wave. Finally, it explained the applications, supported by 5G, new features, various possibilities, and predictions
    • 

    corecore