6,289 research outputs found

    Dynamical system analysis and forecasting of deformation produced by an earthquake fault

    Full text link
    We present a method of constructing low-dimensional nonlinear models describing the main dynamical features of a discrete 2D cellular fault zone, with many degrees of freedom, embedded in a 3D elastic solid. A given fault system is characterized by a set of parameters that describe the dynamics, rheology, property disorder, and fault geometry. Depending on the location in the system parameter space we show that the coarse dynamics of the fault can be confined to an attractor whose dimension is significantly smaller than the space in which the dynamics takes place. Our strategy of system reduction is to search for a few coherent structures that dominate the dynamics and to capture the interaction between these coherent structures. The identification of the basic interacting structures is obtained by applying the Proper Orthogonal Decomposition (POD) to the surface deformations fields that accompany strike-slip faulting accumulated over equal time intervals. We use a feed-forward artificial neural network (ANN) architecture for the identification of the system dynamics projected onto the subspace (model space) spanned by the most energetic coherent structures. The ANN is trained using a standard back-propagation algorithm to predict (map) the values of the observed model state at a future time given the observed model state at the present time. This ANN provides an approximate, large scale, dynamical model for the fault.Comment: 30 pages, 12 figure

    Price Dispersion and Accessibility: A Case study of Fast Food

    Get PDF
    This study examines spatial variation in the price and accessibility of fast food across a major urban area. We use novel data on the price of a representative fast food meal and the location of fast food restaurants belonging to one of three major chains in the District of Columbia and its surrounding suburbs. These data are used to test a structural model of spatial competition. The results of this study are easily interpreted and compared with a past analysis. We find that spatial differences in costs and demand conditions drive variation in the number of firms operating in a market, which in turn affects prices.food prices, food accessibility, spatial competition, price dispersion, fast food

    Characterizing the community structure of complex networks

    Get PDF
    Community structure is one of the key properties of complex networks and plays a crucial role in their topology and function. While an impressive amount of work has been done on the issue of community detection, very little attention has been so far devoted to the investigation of communities in real networks. We present a systematic empirical analysis of the statistical properties of communities in large information, communication, technological, biological, and social networks. We find that the mesoscopic organization of networks of the same category is remarkably similar. This is reflected in several characteristics of community structure, which can be used as ``fingerprints'' of specific network categories. While community size distributions are always broad, certain categories of networks consist mainly of tree-like communities, while others have denser modules. Average path lengths within communities initially grow logarithmically with community size, but the growth saturates or slows down for communities larger than a characteristic size. This behaviour is related to the presence of hubs within communities, whose roles differ across categories. Also the community embeddedness of nodes, measured in terms of the fraction of links within their communities, has a characteristic distribution for each category. Our findings are verified by the use of two fundamentally different community detection methods.Comment: 15 pages, 20 figures, 4 table

    A generalized asynchronous computability theorem

    Full text link
    We consider the models of distributed computation defined as subsets of the runs of the iterated immediate snapshot model. Given a task TT and a model MM, we provide topological conditions for TT to be solvable in MM. When applied to the wait-free model, our conditions result in the celebrated Asynchronous Computability Theorem (ACT) of Herlihy and Shavit. To demonstrate the utility of our characterization, we consider a task that has been shown earlier to admit only a very complex tt-resilient solution. In contrast, our generalized computability theorem confirms its tt-resilient solvability in a straightforward manner.Comment: 16 pages, 5 figure
    • …
    corecore