12 research outputs found

    The Effect of Voltage Dataset Selection on the Accuracy of Entropy-Based Capacity Estimation Methods for Lithium-Ion Batteries

    Get PDF
    It is important to accurately estimate the capacity of the battery in order to extend the service life of the battery and ensure the reliable operation of the battery energy storage system. As entropy can quantify the regularity of a dataset, it can serve as a feature to estimate the capacity of batteries. In order to analyze the effect of voltage dataset selection on the accuracy of entropy-based estimation methods, six voltage datasets were collected, considering the current direction (i.e., charging or discharging) and the state of charge level. Furthermore, three kinds of entropies (approximate entropy, sample entropy, and multiscale entropy) were introduced, and the relationship between the entropies and the battery capacity was established by using first-order polynomial fitting. Finally, the interaction between the test conditions, entropy features, and estimation accuracy was analyzed. Moreover, the results can be used to select the correct voltage dataset and improve the estimation accuracy

    A Time-Varying Log-linear Model for Predicting the Resistance of Lithium-ion Batteries

    Get PDF

    Fuzzy Entropy-based State of Health Estimation for Li-Ion Batteries

    Get PDF

    A novel safety assurance method based on the compound equivalent modeling and iterate reduce particle‐adaptive Kalman filtering for the unmanned aerial vehicle lithium ion batteries.

    Get PDF
    The safety assurance is very important for the unmanned aerial vehicle lithium ion batteries, in which the state of charge estimation is the basis of its energy management and safety protection. A new equivalent modeling method is proposed for the mathematical expression of different structural characteristics, and an improved reduce particle-adaptive Kalman filtering model is designed and built, in which the incorporate multiple featured information is absorbed to explore the optimal representation by abandoning the redundant and abnormal information. And then, the multiple parameter identification is investigated that has the ability of adapting the current varying conditions, according to which the hybrid pulse power characterization test is accommodated. As can be known from the experimental results, the polynomial fitting treatment is carried out by conducting the curve fitting treatment and the maximum estimation error of the closed-circuit-voltage is 0.48% and its state of charge estimation error is lower than 0.30% in the hybrid pulse power characterization test, which is also within 2.00% under complex current varying working conditions. The iterate calculation process is conducted for the unmanned aerial vehicle lithium ion batteries together with the compound equivalent modeling, realizing its adaptive power state estimation and safety protection effectively

    A novel adaptive state of charge estimation method of full life cycling lithium-ion batteries based on the multiple parameter optimization.

    Get PDF
    The state of charge (SoC) estimation is the safety management basis of the packing lithium-ion batteries (LIB), and there is no effective solution yet. An improved splice equivalent modeling method is proposed to describe its working characteristics by using the state-space description, in which the optimization strategy of the circuit structure is studied by using the aspects of equivalent mode, analog calculation, and component distribution adjustment, revealing the mathematical expression mechanism of different structural characteristics. A novel particle adaptive unscented Kalman filtering algorithm is introduced for the iterative calculation to explore the working state characterization mechanism of the packing LIB, in which the incorporate multiple information is considered and applied. The adaptive regulation is obtained by exploring the feature extraction and optimal representation, according to which the accurate SoC estimation model is constructed. The state of balance evaluation theory is explored, and the multiparameter correction strategy is carried out along with the experimental working characteristic analysis under complex conditions, according to which the optimization method is obtained for the SoC estimation model structure. When the remaining energy varies from 10% to 100%, the tracking voltage error is less than 0.035 V and the SoC estimation accuracy is 98.56%. The adaptive working state estimation is realized accurately, which lays a key breakthrough foundation for the safety management of the LIB packs

    Critical review on improved electrochemical impedance spectroscopy-cuckoo search-elman neural network modeling methods for whole-life-cycle health state estimation of lithium-ion battery energy storage systems.

    Get PDF
    Efficient and accurate health state estimation is crucial for lithium-ion battery (LIB) performance monitoring and economic evaluation. Effectively estimating the health state of LIBs online is the key but is also the most difficult task for energy storage systems. With high adaptability and applicability advantages, battery health state estimation based on data-driven techniques has attracted extensive attention from researchers around the world. Artificial neural network (ANN)-based methods are often used for state estimations of LIBs. As one of the ANN methods, the Elman neural network (ENN) model has been improved to estimate the battery state more efficiently and accurately. In this paper, an improved ENN estimation method based on electrochemical impedance spectroscopy (EIS) and cuckoo search (CS) is established as the EIS-CS-ENN model to estimate the health state of LIBs. Also, the paper conducts a critical review of various ANN models against the EIS-CS-ENN model. This demonstrates that the EIS-CS-ENN model outperforms other models. The review also proves that, under the same conditions, selecting appropriate health indicators (HIs) according to the mathematical modeling ability and state requirements are the keys in estimating the health state efficiently. In the calculation process, several evaluation indicators are adopted to analyze and compare the modeling accuracy with other existing methods. Through the analysis of the evaluation results and the selection of HIs, conclusions and suggestions are put forward. Also, the robustness of the EIS-CS-ENN model for the health state estimation of LIBs is verified
    corecore