1,062 research outputs found

    Seeing voices and hearing voices: learning discriminative embeddings using cross-modal self-supervision

    Full text link
    The goal of this work is to train discriminative cross-modal embeddings without access to manually annotated data. Recent advances in self-supervised learning have shown that effective representations can be learnt from natural cross-modal synchrony. We build on earlier work to train embeddings that are more discriminative for uni-modal downstream tasks. To this end, we propose a novel training strategy that not only optimises metrics across modalities, but also enforces intra-class feature separation within each of the modalities. The effectiveness of the method is demonstrated on two downstream tasks: lip reading using the features trained on audio-visual synchronisation, and speaker recognition using the features trained for cross-modal biometric matching. The proposed method outperforms state-of-the-art self-supervised baselines by a signficant margin.Comment: Under submission as a conference pape

    Speech Processing in Computer Vision Applications

    Get PDF
    Deep learning has been recently proven to be a viable asset in determining features in the field of Speech Analysis. Deep learning methods like Convolutional Neural Networks facilitate the expansion of specific feature information in waveforms, allowing networks to create more feature dense representations of data. Our work attempts to address the problem of re-creating a face given a speaker\u27s voice and speaker identification using deep learning methods. In this work, we first review the fundamental background in speech processing and its related applications. Then we introduce novel deep learning-based methods to speech feature analysis. Finally, we will present our deep learning approaches to speaker identification and speech to face synthesis. The presented method can convert a speaker audio sample to an image of their predicted face. This framework is composed of several chained together networks, each with an essential step in the conversion process. These include Audio embedding, encoding, and face generation networks, respectively. Our experiments show that certain features can map to the face and that with a speaker\u27s voice, DNNs can create their face and that a GUI could be used in conjunction to display a speaker recognition network\u27s data

    Hierarchical Cross-Modal Talking Face Generationwith Dynamic Pixel-Wise Loss

    Full text link
    We devise a cascade GAN approach to generate talking face video, which is robust to different face shapes, view angles, facial characteristics, and noisy audio conditions. Instead of learning a direct mapping from audio to video frames, we propose first to transfer audio to high-level structure, i.e., the facial landmarks, and then to generate video frames conditioned on the landmarks. Compared to a direct audio-to-image approach, our cascade approach avoids fitting spurious correlations between audiovisual signals that are irrelevant to the speech content. We, humans, are sensitive to temporal discontinuities and subtle artifacts in video. To avoid those pixel jittering problems and to enforce the network to focus on audiovisual-correlated regions, we propose a novel dynamically adjustable pixel-wise loss with an attention mechanism. Furthermore, to generate a sharper image with well-synchronized facial movements, we propose a novel regression-based discriminator structure, which considers sequence-level information along with frame-level information. Thoughtful experiments on several datasets and real-world samples demonstrate significantly better results obtained by our method than the state-of-the-art methods in both quantitative and qualitative comparisons
    • …
    corecore