163 research outputs found

    Improved reference genome of Aedes aegypti informs arbovirus vector control.

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    A Genomic Investigation of Divergence Between Tuna Species

    Get PDF
    Effective management and conservation of marine pelagic fishes is heavily dependent on a robust understanding of their population structure, their evolutionary history, and the delineation of appropriate management units. The Yellowfin tuna (Thunnus albacares) and the Blackfin tuna (Thunnus atlanticus) are two exploited epipelagic marine species with overlapping ranges in the tropical and sub-tropical Atlantic Ocean. This work analyzed genome-wide genetic variation of both species in the Atlantic basin to investigate the occurrence of population subdivision and adaptive variation. A de novo assembly of the Blackfin tuna genome was generated using Illumina paired-end sequencing data and applied as a reference for population genomic analysis of specimens from 9 localities spanning most of the Blackfin tuna range. Analysis suggested the presence of four weakly differentiated units corresponding to the northwestern Atlantic Ocean, Gulf of Mexico, Caribbean Sea, and southwestern Atlantic Ocean, respectively. Significant spatial autocorrelation of genotypes was observed for specimens collected within 800 km of each other. A high-quality genome assembly generated for the Yellowfin tuna using PacBio and Illumina sequences was scaffolded by a linkage map developed through analysis of the segregation of genome wide Single Nucleotide Polymorphisms in 164 larvae offspring from a single pair produced by controlled breeding. The genome assembly was used as a reference for population genomic analysis of juvenile specimens from the 4 main nursery areas hypothesized in the Atlantic Ocean basin. Analyses corroborated previously reported population subdivision between the east and west Atlantic Ocean, but also suggested subdivision associated with individual nursery areas within the east and west regions. Draft reference assemblies were generated for Albacore, Bigeye and Longtail tunas and used in combination with the Yellowfin and Blackfin tuna genomes obtained in this work and existing assemblies for bluefin tunas in preliminary analyses of genome wide variation between species of the Thunnus genus. Whole-genome derived SNP-based phylogenetic analysis of the Thunnus genus suggests phylogenetic relationships may be more complex than suggested in earlier work based on Restriction-site Associated DNA sequencing or muscle transcriptome sequencing and prompt for further analysis of the genus using a more comprehensive sampling of taxa in each oceanic basin

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    Molecular and Cell Biology of Infantile (CLN1) and variant Late Infantile (CLN5) Neuronal Ceroid Lipofuscinoses

    Get PDF
    Myös verkossa; väitöskirja, ohj. Leena Peltonen-Paloti

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    POPSEQ Anchoring and ordering contig assemblies from next generation sequencing data by population sequencing

    Get PDF
    Mascher M. POPSEQ Anchoring and ordering contig assemblies from next generation sequencing data by population sequencing. Bielefeld: Universität Bielefeld; 2014

    NATURAL AND ANTHROPOGENIC DRIVERS OF TREE EVOLUTIONARY DYNAMICS

    Get PDF
    Species of trees inhabit diverse and heterogeneous environments, and often play important ecological roles in such communities. As a result of their vast ecological breadth, trees have become adapted to various environmental pressures. In this dissertation I examine various environmental factors that drive evolutionary dynamics in threePinusspecies in California and Nevada, USA. In chapter two, I assess the role of management influence of thinning, fire, and their interaction on fine-scale gene flow within fire-suppressed populations of Pinus lambertiana, a historically dominant and ecologically important member of mixed-conifer forests of the Sierra Nevada, California. Here, I find evidence that treatment prescription differentially affects fine-scale genetic structure and effective gene flow in this species. In my third chapter, I describe the development of a dense linkage map for Pinus balfouriana which I use in chapter four to assess the quantitative trait locus (QTL) landscape of water-use efficiency across two isolated ranges of the species. I find evidence that precipitation-related variables structure the geographical range of P. balfouriana, that traits related to water-use efficiency are heritable and differentiated across populations, and associated QTLs underlying this phenotypic variation explain large proportions of total variation. In chapter five, I assess evidence for local adaptation to the eastern Sierra Nevada rain shadow within P. albicaulisacross fine spatial scales of the Lake Tahoe Basin, USA. Here, genetic variation of traits related to water availability were structured more so across populations than neutral variation, and loci identified by genome-wide association methods show elevated signals of local adaptation that track soil water availability. In chapter six, I review theory related to polygenic local adaptation and literature of genotype-phenotype associations in trees. I find that evidence suggests a polygenic basis for many traits important to conservation and industry, and I suggest paths forward to best describing such genetic bases in tree species. Overall, my results show that spatial and genetic structure of trees are often driven by their environment, and that ongoing selective pressures driven by environmental change will continue to be important in these systems

    Positional Cloning of the Mulibrey Nanism Gene (MUL)

    Get PDF
    • …
    corecore