1,794 research outputs found

    GCN-Based Linkage Prediction for Face Clustering on Imbalanced Datasets: An Empirical Study

    Full text link
    In recent years, benefiting from the expressive power of Graph Convolutional Networks (GCNs), significant breakthroughs have been made in face clustering. However, rare attention has been paid to GCN-based clustering on imbalanced data. Although imbalance problem has been extensively studied, the impact of imbalanced data on GCN-based linkage prediction task is quite different, which would cause problems in two aspects: imbalanced linkage labels and biased graph representations. The problem of imbalanced linkage labels is similar to that in image classification task, but the latter is a particular problem in GCN-based clustering via linkage prediction. Significantly biased graph representations in training can cause catastrophic overfitting of a GCN model. To tackle these problems, we evaluate the feasibility of those existing methods for imbalanced image classification problem on graphs with extensive experiments, and present a new method to alleviate the imbalanced labels and also augment graph representations using a Reverse-Imbalance Weighted Sampling (RIWS) strategy, followed with insightful analyses and discussions. The code and a series of imbalanced benchmark datasets synthesized from MS-Celeb-1M and DeepFashion are available on https://github.com/espectre/GCNs_on_imbalanced_datasets.Comment: 7 page

    Adaptive Face Recognition Using Adversarial Information Network

    Full text link
    In many real-world applications, face recognition models often degenerate when training data (referred to as source domain) are different from testing data (referred to as target domain). To alleviate this mismatch caused by some factors like pose and skin tone, the utilization of pseudo-labels generated by clustering algorithms is an effective way in unsupervised domain adaptation. However, they always miss some hard positive samples. Supervision on pseudo-labeled samples attracts them towards their prototypes and would cause an intra-domain gap between pseudo-labeled samples and the remaining unlabeled samples within target domain, which results in the lack of discrimination in face recognition. In this paper, considering the particularity of face recognition, we propose a novel adversarial information network (AIN) to address it. First, a novel adversarial mutual information (MI) loss is proposed to alternately minimize MI with respect to the target classifier and maximize MI with respect to the feature extractor. By this min-max manner, the positions of target prototypes are adaptively modified which makes unlabeled images clustered more easily such that intra-domain gap can be mitigated. Second, to assist adversarial MI loss, we utilize a graph convolution network to predict linkage likelihoods between target data and generate pseudo-labels. It leverages valuable information in the context of nodes and can achieve more reliable results. The proposed method is evaluated under two scenarios, i.e., domain adaptation across poses and image conditions, and domain adaptation across faces with different skin tones. Extensive experiments show that AIN successfully improves cross-domain generalization and offers a new state-of-the-art on RFW dataset.Comment: Accepted by TI

    Image Clustering using Restricted Boltzman Machine

    Full text link
    In various verification systems, Restricted Boltzmann Machines (RBMs) have demonstrated their efficacy in both front-end and back-end processes. In this work, we propose the use of RBMs to the image clustering tasks. RBMs are trained to convert images into image embeddings. We employ the conventional bottom-up Agglomerative Hierarchical Clustering (AHC) technique. To address the challenge of limited test face image data, we introduce Agglomerative Hierarchical Clustering based Method for Image Clustering using Restricted Boltzmann Machine (AHC-RBM) with two major steps. Initially, a universal RBM model is trained using all available training dataset. Subsequently, we train an adapted RBM model using the data from each test image. Finally, RBM vectors which is the embedding vector is generated by concatenating the visible-to-hidden weight matrices of these adapted models, and the bias vectors. These vectors effectively preserve class-specific information and are utilized in image clustering tasks. Our experimental results, conducted on two benchmark image datasets (MS-Celeb-1M and DeepFashion), demonstrate that our proposed approach surpasses well-known clustering algorithms such as k-means, spectral clustering, and approximate Rank-order

    A Survey of Deep Graph Clustering: Taxonomy, Challenge, and Application

    Full text link
    Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.Comment: 13 pages, 13 figure
    • …
    corecore