16,643 research outputs found

    Link Prediction via Convex Nonnegative Matrix Factorization on Multiscale Blocks

    Get PDF
    Low rank matrices approximations have been used in link prediction for networks, which are usually global optimal methods and lack of using the local information. The block structure is a significant local feature of matrices: entities in the same block have similar values, which implies that links are more likely to be found within dense blocks. We use this insight to give a probabilistic latent variable model for finding missing links by convex nonnegative matrix factorization with block detection. The experiments show that this method gives better prediction accuracy than original method alone. Different from the original low rank matrices approximations methods for link prediction, the sparseness of solutions is in accord with the sparse property for most real complex networks. Scaling to massive size network, we use the block information mapping matrices onto distributed architectures and give a divide-and-conquer prediction method. The experiments show that it gives better results than common neighbors method when the networks have a large number of missing links

    Probabilistic Latent Tensor Factorization Model for Link Pattern Prediction in Multi-relational Networks

    Full text link
    This paper aims at the problem of link pattern prediction in collections of objects connected by multiple relation types, where each type may play a distinct role. While common link analysis models are limited to single-type link prediction, we attempt here to capture the correlations among different relation types and reveal the impact of various relation types on performance quality. For that, we define the overall relations between object pairs as a \textit{link pattern} which consists in interaction pattern and connection structure in the network, and then use tensor formalization to jointly model and predict the link patterns, which we refer to as \textit{Link Pattern Prediction} (LPP) problem. To address the issue, we propose a Probabilistic Latent Tensor Factorization (PLTF) model by introducing another latent factor for multiple relation types and furnish the Hierarchical Bayesian treatment of the proposed probabilistic model to avoid overfitting for solving the LPP problem. To learn the proposed model we develop an efficient Markov Chain Monte Carlo sampling method. Extensive experiments are conducted on several real world datasets and demonstrate significant improvements over several existing state-of-the-art methods.Comment: 19pages, 5 figure

    Link Prediction via Generalized Coupled Tensor Factorisation

    Full text link
    This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links

    Complex Embeddings for Simple Link Prediction

    Get PDF
    In statistical relational learning, the link prediction problem is key to automatically understand the structure of large knowledge bases. As in previous studies, we propose to solve this problem through latent factorization. However, here we make use of complex valued embeddings. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. Compared to state-of-the-art models such as Neural Tensor Network and Holographic Embeddings, our approach based on complex embeddings is arguably simpler, as it only uses the Hermitian dot product, the complex counterpart of the standard dot product between real vectors. Our approach is scalable to large datasets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks.Comment: 10+2 pages, accepted at ICML 201
    • …
    corecore