4 research outputs found

    Hikester - the event management application

    Full text link
    Today social networks and services are one of the most important part of our everyday life. Most of the daily activities, such as communicating with friends, reading news or dating is usually done using social networks. However, there are activities for which social networks do not yet provide adequate support. This paper focuses on event management and introduces "Hikester". The main objective of this service is to provide users with the possibility to create any event they desire and to invite other users. "Hikester" supports the creation and management of events like attendance of football matches, quest rooms, shared train rides or visit of museums in foreign countries. Here we discuss the project architecture as well as the detailed implementation of the system components: the recommender system, the spam recognition service and the parameters optimizer

    Deep Learning for Link Prediction in Dynamic Networks using Weak Estimators

    Full text link
    Link prediction is the task of evaluating the probability that an edge exists in a network, and it has useful applications in many domains. Traditional approaches rely on measuring the similarity between two nodes in a static context. Recent research has focused on extending link prediction to a dynamic setting, predicting the creation and destruction of links in networks that evolve over time. Though a difficult task, the employment of deep learning techniques have shown to make notable improvements to the accuracy of predictions. To this end, we propose the novel application of weak estimators in addition to the utilization of traditional similarity metrics to inexpensively build an effective feature vector for a deep neural network. Weak estimators have been used in a variety of machine learning algorithms to improve model accuracy, owing to their capacity to estimate changing probabilities in dynamic systems. Experiments indicate that our approach results in increased prediction accuracy on several real-world dynamic networks

    Discriminative Distance-Based Network Indices with Application to Link Prediction

    Full text link
    In large networks, using the length of shortest paths as the distance measure has shortcomings. A well-studied shortcoming is that extending it to disconnected graphs and directed graphs is controversial. The second shortcoming is that a huge number of vertices may have exactly the same score. The third shortcoming is that in many applications, the distance between two vertices not only depends on the length of shortest paths, but also on the number of shortest paths. In this paper, first we develop a new distance measure between vertices of a graph that yields discriminative distance-based centrality indices. This measure is proportional to the length of shortest paths and inversely proportional to the number of shortest paths. We present algorithms for exact computation of the proposed discriminative indices. Second, we develop randomized algorithms that precisely estimate average discriminative path length and average discriminative eccentricity and show that they give (ϵ,δ)(\epsilon,\delta)-approximations of these indices. Third, we perform extensive experiments over several real-world networks from different domains. In our experiments, we first show that compared to the traditional indices, discriminative indices have usually much more discriminability. Then, we show that our randomized algorithms can very precisely estimate average discriminative path length and average discriminative eccentricity, using only few samples. Then, we show that real-world networks have usually a tiny average discriminative path length, bounded by a constant (e.g., 2). Fourth, in order to better motivate the usefulness of our proposed distance measure, we present a novel link prediction method, that uses discriminative distance to decide which vertices are more likely to form a link in future, and show its superior performance compared to the well-known existing measures
    corecore