14 research outputs found

    An analysis of alphabet-based techniques in text steganography

    Get PDF
    Steganography and cryptography are methods in information hiding.Cryptography scrambles the secret message, whereas steganography conceals a secret message in a carrier medium.An audio, video, image, and text can be used as a cover medium for hiding messages in steganography. The final output of steganography is a stego object that is sent to a receiver using a stego key. Suspiciousness of a generated stego text will encourage eavesdroppers to reveal the hidden message from stego text. Having reviewed substitution, injection, and propagation techniques for steganography, this paper discovers that there is a suspicion in the generated stego text. It is also discovered that text steganography using Genetic Algorithm (GA) is less focused by researchers compared to image and audio.Accordingly, this paper proposes that the adoption of GA should be focused in future works to protect stego text from suspiciousness due to the effectiveness and efficiency used in other media.Suspiciousness against stego text is very important in steganography to avoid third parties detecting the existence of secret message

    Smart techniques and tools to detect Steganography - a viable practice to Security Office Department

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementInternet is today a commodity and a way for being connect to the world. It is through Internet is where most of the information is shared and where people run their businesses. However, there are some people that make a malicious use of it. Cyberattacks have been increasing all over the recent years, targeting people and organizations, looking to perform illegal actions. Cyber criminals are always looking for new ways to deliver malware to victims to launch an attack. Millions of users share images and photos on their social networks and generally users find them safe to use. Contrary to what most people think, images can contain a malicious payload and perform harmful actions. Steganography is the technique of hiding data, which, combined with media files, can be used to place malicious code. This problem, leveraged by the continuous media file sharing through massive use of digital platforms, may become a worldwide threat in malicious content sharing. Like phishing, people and organizations must be trained to suspect about inappropriate content and implement the proper set of actions to reduce probability of infections when accessing files supposed to be inoffensive. The aim of this study will try to help people and organizations by trying to set a toolbox where it can be possible to get some tools and techniques to assist in dealing with this kind of situations. A theoretical overview will be performed over other concepts such as Steganalysis, touching also Deep Learning and in Machine Learning to assess which is the range of its applicability in find solutions in detection and facing these situations. In addition, understanding the current main technologies, architectures and users’ hurdles will play an important role in designing and developing the proposed toolbox artifact

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Building Security Protocols Against Powerful Adversaries

    Get PDF
    As our sensitive data is increasingly carried over the Internet and stored remotely, security in communications becomes a fundamental requirement. Yet, today's security practices are designed around assumptions the validity of which is being challenged. In this thesis we design new security mechanisms for certain scenarios where traditional security assumptions do not hold. First, we design secret-agreement protocols for wireless networks, where the security of the secrets does not depend on assumptions about the computational limitations of adversaries. Our protocols leverage intrinsic characteristics of the wireless to enable nodes to agree on common pairwise secrets that are secure against computationally unconstrained adversaries. Through testbed and simulation experimentation, we show that it is feasible in practice to create thousands of secret bits per second. Second, we propose a traffic anonymization scheme for wireless networks. Our protocol aims in providing anonymity in a fashion similar to Tor - yet being resilient to computationally unbounded adversaries - by exploiting the security properties of our secret-agreement. Our analysis and simulation results indicate that our scheme can offer a level of anonymity comparable to the level of anonymity that Tor does. Third, we design a lightweight data encryption protocol for protecting against computationally powerful adversaries in wireless sensor networks. Our protocol aims in increasing the inherent weak security that network coding naturally offers, at a low extra overhead. Our extensive simulation results demonstrate the additional security benefits of our approach. Finally, we present a steganographic mechanism for secret message exchange over untrustworthy messaging service providers. Our scheme masks secret messages into innocuous texts, aiming in hiding the fact that secret message exchange is taking place. Our results indicate that our schemes succeeds in communicating hidden information at non-negligible rates
    corecore