190,851 research outputs found

    Limitations of Cross-Lingual Learning from Image Search

    Full text link
    Cross-lingual representation learning is an important step in making NLP scale to all the world's languages. Recent work on bilingual lexicon induction suggests that it is possible to learn cross-lingual representations of words based on similarities between images associated with these words. However, that work focused on the translation of selected nouns only. In our work, we investigate whether the meaning of other parts-of-speech, in particular adjectives and verbs, can be learned in the same way. We also experiment with combining the representations learned from visual data with embeddings learned from textual data. Our experiments across five language pairs indicate that previous work does not scale to the problem of learning cross-lingual representations beyond simple nouns

    Model Transfer for Tagging Low-resource Languages using a Bilingual Dictionary

    Full text link
    Cross-lingual model transfer is a compelling and popular method for predicting annotations in a low-resource language, whereby parallel corpora provide a bridge to a high-resource language and its associated annotated corpora. However, parallel data is not readily available for many languages, limiting the applicability of these approaches. We address these drawbacks in our framework which takes advantage of cross-lingual word embeddings trained solely on a high coverage bilingual dictionary. We propose a novel neural network model for joint training from both sources of data based on cross-lingual word embeddings, and show substantial empirical improvements over baseline techniques. We also propose several active learning heuristics, which result in improvements over competitive benchmark methods.Comment: 5 pages with 2 pages reference. Accepted to appear in ACL 201

    Unsupervised cross-lingual speaker adaptation for HMM-based speech synthesis using two-pass decision tree construction

    Get PDF
    This paper demonstrates how unsupervised cross-lingual adaptation of HMM-based speech synthesis models may be performed without explicit knowledge of the adaptation data language. A two-pass decision tree construction technique is deployed for this purpose. Using parallel translated datasets, cross-lingual and intralingual adaptation are compared in a controlled manner. Listener evaluations reveal that the proposed method delivers performance approaching that of unsupervised intralingual adaptation
    corecore