190,851 research outputs found
Limitations of Cross-Lingual Learning from Image Search
Cross-lingual representation learning is an important step in making NLP
scale to all the world's languages. Recent work on bilingual lexicon induction
suggests that it is possible to learn cross-lingual representations of words
based on similarities between images associated with these words. However, that
work focused on the translation of selected nouns only. In our work, we
investigate whether the meaning of other parts-of-speech, in particular
adjectives and verbs, can be learned in the same way. We also experiment with
combining the representations learned from visual data with embeddings learned
from textual data. Our experiments across five language pairs indicate that
previous work does not scale to the problem of learning cross-lingual
representations beyond simple nouns
Model Transfer for Tagging Low-resource Languages using a Bilingual Dictionary
Cross-lingual model transfer is a compelling and popular method for
predicting annotations in a low-resource language, whereby parallel corpora
provide a bridge to a high-resource language and its associated annotated
corpora. However, parallel data is not readily available for many languages,
limiting the applicability of these approaches. We address these drawbacks in
our framework which takes advantage of cross-lingual word embeddings trained
solely on a high coverage bilingual dictionary. We propose a novel neural
network model for joint training from both sources of data based on
cross-lingual word embeddings, and show substantial empirical improvements over
baseline techniques. We also propose several active learning heuristics, which
result in improvements over competitive benchmark methods.Comment: 5 pages with 2 pages reference. Accepted to appear in ACL 201
Unsupervised cross-lingual speaker adaptation for HMM-based speech synthesis using two-pass decision tree construction
This paper demonstrates how unsupervised cross-lingual adaptation of HMM-based speech synthesis models may be performed without explicit knowledge of the adaptation data
language. A two-pass decision tree construction technique is deployed for this purpose. Using parallel translated datasets, cross-lingual and intralingual adaptation are compared in a controlled manner. Listener evaluations reveal that the
proposed method delivers performance approaching that of unsupervised intralingual adaptation
- …
