217 research outputs found

    Classical and quantum coupled oscillators: symplectic structure

    Full text link
    We consider a set of N linearly coupled harmonic oscillators and show that the diagonalization of this problem can be put in geometrical terms. The matrix techniques developed here allowed for solutions in both the classical and quantum regimes.Comment: 27 pages, 6 figure

    Ultrafast control of Rabi oscillations in a polariton condensate

    Get PDF
    We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.Comment: 5 pages, 3 figures, supplementary 7 pages, 4 figures. Supplementary videos: https://drive.google.com/folderview?id=0B0QCllnLqdyBNjlMLTdjZlNhbTQ&usp=sharin

    Nonlinear waves in a chain of magnetically coupled pendula

    Get PDF
    A motivation for the study of reduced models like one-dimensional systems in Solid State Physics is the complexity of the full problem. In recent years our group has studied theoretically, numerically and experimentally wave propagation in lattices of nonlinearly coupled oscillators. Here, we present the dynamics of magnetically coupled pendula lattices. These macroscopic systems can model the dynamical processes of matter or layered systems. We report the results obtained for harmonic wave propagation in these media, and the different regimes of mode conversion into higher harmonics strongly influenced by dispersion and discreteness, including the phenomenon of acoustic dilatation of the chain, as well as some results on the propagation of localized waves i.e., solitons and kinks.Generalitat Valenciana APOSTD/2017/042Umiversitat Politècnica de València PAID-01-14Ministerio de Economía y Competitividad (MINECO), Spain FIS2015-65998-C2-2-PJunta de Andalucía 2017/FQM-28

    On Resonance in Periodically Forced Oscillators and Coupled Systems of Excitable Systems and Nonlinear Oscillators

    Get PDF
    We analyze some mathematical problems that arise in studies of phenomena observed in the cardiac action. We illustrate a method to characterize the response of a nonlinear oscillator to an external forcing, and introduce some numerical results. We also introduce some results of numerical computation in an example of a coupled system of an excitable system and a nonlinear oscillator

    Open system dynamics with non-Markovian quantum trajectories

    Full text link
    A non-Markovian stochastic Schroedinger equation for a quantum system coupled to an environment of harmonic oscillators is presented. Its solutions, when averaged over the noise, reproduce the standard reduced density operator without any approximation. We illustrate the power of this approach with several examples, including exponentially decaying bath correlations and extreme non-Markovian cases, where the `environment' consists of only a single oscillator. The latter case shows the decay and revival of a `Schroedinger cat' state. For strong coupling to a dissipative environment with memory, the asymptotic state can be reached in a finite time. Our description of open systems is compatible with different positions of the `Heisenberg cut' between system and environment.Comment: 4 pages RevTeX, 3 figure
    corecore