1,299 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    K-Deep Simplex: Deep Manifold Learning via Local Dictionaries

    Full text link
    We propose K-Deep Simplex (KDS), a unified optimization framework for nonlinear dimensionality reduction that combines the strengths of manifold learning and sparse dictionary learning. Our approach learns local dictionaries that represent a data point with reconstruction coefficients supported on the probability simplex. The dictionaries are learned using algorithm unrolling, an increasingly popular technique for structured deep learning. KDS enjoys tremendous computational advantages over related approaches and is both interpretable and flexible. In particular, KDS is quasilinear in the number of data points with scaling that depends on intrinsic geometric properties of the data. We apply KDS to the unsupervised clustering problem and prove theoretical performance guarantees. Experiments show that the algorithm is highly efficient and performs competitively on synthetic and real data sets.Comment: 14 pages, 6 figure

    Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit

    Full text link
    Subspace clustering methods based on â„“1\ell_1, â„“2\ell_2 or nuclear norm regularization have become very popular due to their simplicity, theoretical guarantees and empirical success. However, the choice of the regularizer can greatly impact both theory and practice. For instance, â„“1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad conditions (e.g., arbitrary subspaces and corrupted data). However, it requires solving a large scale convex optimization problem. On the other hand, â„“2\ell_2 and nuclear norm regularization provide efficient closed form solutions, but require very strong assumptions to guarantee a subspace-preserving affinity, e.g., independent subspaces and uncorrupted data. In this paper we study a subspace clustering method based on orthogonal matching pursuit. We show that the method is both computationally efficient and guaranteed to give a subspace-preserving affinity under broad conditions. Experiments on synthetic data verify our theoretical analysis, and applications in handwritten digit and face clustering show that our approach achieves the best trade off between accuracy and efficiency.Comment: 13 pages, 1 figure, 2 tables. Accepted to CVPR 2016 as an oral presentatio
    • …
    corecore